留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热流环境下薄壁结构随机振动响应计算与疲劳分析

沙云东 艾思泽 张家铭

沙云东, 艾思泽, 张家铭. 热流环境下薄壁结构随机振动响应计算与疲劳分析[J]. 航空动力学报, 2020, 35(7): 1402-1412. doi: 10.13224/j.cnki.jasp.2020.07.008
引用本文: 沙云东, 艾思泽, 张家铭. 热流环境下薄壁结构随机振动响应计算与疲劳分析[J]. 航空动力学报, 2020, 35(7): 1402-1412. doi: 10.13224/j.cnki.jasp.2020.07.008
SHA Yundong, AI Size, ZHANG Jiaming. Random vibration response calculation and fatigue analysis of thin-walled structures under heat flux environment,[J]. Journal of Aerospace Power, 2020, 35(7): 1402-1412. doi: 10.13224/j.cnki.jasp.2020.07.008
Citation: SHA Yundong, AI Size, ZHANG Jiaming. Random vibration response calculation and fatigue analysis of thin-walled structures under heat flux environment,[J]. Journal of Aerospace Power, 2020, 35(7): 1402-1412. doi: 10.13224/j.cnki.jasp.2020.07.008

热流环境下薄壁结构随机振动响应计算与疲劳分析

doi: 10.13224/j.cnki.jasp.2020.07.008
基金项目: 辽宁省“兴辽英才计划”项目(XLYC1802086); 共用技术(G-ZB0022017)

Random vibration response calculation and fatigue analysis of thin-walled structures under heat flux environment,

  • 摘要: 针对高速热流环境下薄壁结构随机振动应力响应变化规律与疲劳失效问题,进行了数值仿真计算与高温随机振动试验。通过对比仿真计算结果与试验结果发现模态误差小于28%,应力响应误差小于4%。结构疲劳失效时间误差小于3 430 s,验证了此仿真方法的可用性与准确性。使用该数值仿真方法,基于耦合的FEM/BEM(有限元/边界元)理论,通过Fluent软件模拟高速热流环境,实现了高速热流环境下薄壁结构随机振动应力响应的计算。获取了薄壁结构在不同振动量级与热流环境影响下动力学响应与疲劳失效时间。分析不同环境温度各流速下结构热随机振动应力响应及疲劳失效时间变化规律,并阐述造成这种变化的原因。完成的工作可对高速热流环境下薄壁结构热随机振动疲劳失效时间预估提供参考依据。

     

  • [1] VAICAITIS R.Nonlinear response and sonic fatigue of national aerospace space plane surface panels[J].Journal of Aircraft,1994,31(1):10-18.
    [2] VAICAITIS R,KAVALLIERATOS P A.Nonlinear response of composite panels to random excitation[R].AIAA-93-1426-CP,1993.
    [3] STEPHENS V M.A2100 commercial satellites integrated mechanical analysis[R].Newport Beach,California,US:Lockheed Martin Missiles & Space Sunnyvale,1997.
    [4] KEHOE M W,SNYDER H T.Thermoelastic vibration test technique[R].NASA TM 101742,1991.
    [5] SNYDER H T,KEHOE M W.Determination of the effects of heating on modal characteristics of an aluminum plate with application to hypersonic vehicles[R].NASA TM 4274,1991.
    [6] LEE J.Displacement and strain histograms of thermally buckled composite plates in random vibration[R].AIAA-96-1347,1996.
    [7] LEE J.Displacement and strain statistics of thermally buckled plates[J].Journal of Aircraft,2001,38(1):104-110.
    [8] SCHNEIDER C W,RUDDER F.Acoustic fatigue resistance of aircraft structures at elevated temperatures[R].AIAA-73-994,1973.
    [9] PRZEKOP A,RIZZI S A,SWEITZER K A.An investigation of high-cycle fatigue models for metallic structures exhibiting snap-through response[J].International Journal of Fatigue 2008,30(9):1579-1598.
    [10] NG C F,CLEVENSON S A.High-intensity acoustic tests of a thermally stressed plate[J].Journal of Aircraft,1991,28(4):275-281.
    [11] KLENKE S,LAUFFER J,GREGORG D,et al.The vibration virtual environment for test optimization(VETO)[R].Sandia Report SAND-96-2217C,1996.
    [12] 王琰,郭定文.航空发动机转子叶片的声振疲劳特性试验[J].航空动力学报,2016,31(11):2738-2743. WANG Yan,GUO Dingwen.Experiment on acoustic vibration fatigue properties of the aero-engine rotor blade[J].Journal of Aerospace Power,2016,31(11):2738-2743.(in Chinese)
    [13] 韩增尧,曲广吉.航天器宽带随机振动响应分析[J].中国空间科学技术,2002(1):24-30. HAN Zengyao,QU Guangji.Wide-band random vibration response prediction study of the spacecraft structures[J].Chinese Space Science and Technology,2002(1):24-30.(in Chinese)
    [14] 吴大方,赵寿根,潘兵,等.高速飞行器中空翼结构高温热振动特性试验研究[J].力学学报,2013,45(4):598-605. WU Dafang,ZHAO Shougen,PAN Bing,et al.Experimental study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles[J].Chinese Journal of Theoretical and Applied Mechanics,2013,45(4):598-605.(in Chinese)
    [15] 吴大方,王岳武,蒲颖,等.高超声速飞行器复合材料翼面结构1 100 ℃高温环境下的热模态试验[J].复合材料学报,2015,32(2):323-331. WU Dafang,WANG Yuewu,PU Ying,et al.Thermal modal test of composite wing structure in high-temperature environments up to 1 100 ℃ for hypersonic flight vehicles[J].Acta Materiae Compositae Sinica,2015,32(2):323-331.(in Chinese)
    [16] 沙云东,郭小鹏,张军.基于应力概率密度和功率谱密度法的随机声疲劳寿命预估方法研究[J].振动与冲击,2010,29(1):162-165. SHA Yundong,GUO Xiaopeng,ZHANG Jun.Random sonic fatigue life prediction based on stress probability density and power spectral density method[J].Journal of Vibration and Shock,2010,29(1):162-165.(in Chinese)
    [17] 沙云东,魏静.热声激励下金属薄壁结构的随机疲劳寿命估算[J].振动与冲击,2013,32(10):162-166. SHA Yundong,WEI Jing.Random fatigue life prediction of metallic thin-walled structures under thermo-acoustic excitation[J].Journal of Vibration and Shock,2013,32(10):162-166.(in Chinese)
    [18] 沙云东,胡翼飞,胡增辉.薄壁结构高温随机振动疲劳方法有效性验证[J].推进技术,2018,39(6):1386-1395. SHA Yundong,HU Yifei,HU Zenghui.Random vibration fatigue analysis method valid verification of thin-walled structure under high temperature environment[J].Journal of Propulsion Technology,2018,39(6):1386-1395.(in Chinese)
    [19] 过玉卿,龙靖宇.改进雨流计数法及其统计处理程序[J].武汉钢铁学院学报,1987(1):22-28. GUO Yuqing,LONG Jingyu.An improved rain flow counting method and computer programming of its statistic treatment[J].Journal of Wuhan Iron and Steel University,1987(1):22-28.(in Chinese)
  • 加载中
计量
  • 文章访问数:  327
  • HTML浏览量:  12
  • PDF量:  648
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-03
  • 刊出日期:  2020-07-28

目录

    /

    返回文章
    返回