留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风车状态下转子性能及通道内流动分析

李达 鹿哈男 潘天宇

李达, 鹿哈男, 潘天宇. 风车状态下转子性能及通道内流动分析[J]. 航空动力学报, 2020, 35(7): 1506-1520. doi: 10.13224/j.cnki.jasp.2020.07.019
引用本文: 李达, 鹿哈男, 潘天宇. 风车状态下转子性能及通道内流动分析[J]. 航空动力学报, 2020, 35(7): 1506-1520. doi: 10.13224/j.cnki.jasp.2020.07.019
LI Da, LU Hanan, PAN Tianyu. Aerodynamic performance of compressor rotor and flow analysis at windmilling condition[J]. Journal of Aerospace Power, 2020, 35(7): 1506-1520. doi: 10.13224/j.cnki.jasp.2020.07.019
Citation: LI Da, LU Hanan, PAN Tianyu. Aerodynamic performance of compressor rotor and flow analysis at windmilling condition[J]. Journal of Aerospace Power, 2020, 35(7): 1506-1520. doi: 10.13224/j.cnki.jasp.2020.07.019

风车状态下转子性能及通道内流动分析

doi: 10.13224/j.cnki.jasp.2020.07.019
基金项目: 国家自然科学基金(51636001,51906005,51706008); 航空动力基金(6141B09050375)

Aerodynamic performance of compressor rotor and flow analysis at windmilling condition

  • 摘要: 为探究低展弦比压气机转子在风车状态下由压气机模式向涡轮模式转化过程中性能、内部流场结构以及气动损失的演化过程,提出了一种基于叶片和流体间能量传递的简化数值计算方法,以获得某转速下的风车状态临界流量点。在数值模拟的基础上,重点对比了同一转速线上压气机工况点(小流量工况)、风车临界点和涡轮工况点下叶尖泄漏损失的演化机制,同时探究了叶片通道内流动分离的演化过程。 结果显示,随着转速的增加,转子风车状态临界流量呈现近似线性的变化趋势。而同转速下随流量增大,叶尖泄漏流从吸力面流向压力面,并与压力面上的低能量流体进行掺混,造成了流动堵塞。同时,从压气机模式转向涡轮模式的过程中,叶尖区域的流动分离从吸力面分离转变为压力面分离,随后分离强度和尺寸逐渐增大,造成的气动损失显著增加;而在轮毂区域,流动分离始终保持吸力面分离,其分离尺度沿径向有所发展。

     

  • [1] PAKANATI P,SAMPATH R,IRANI R.High fidelity engine performance models for windmill relight predictions[J].AIAA 2006-4970,2006.
    [2] BRAIG W,SCHULTE H,RIEGLER C.Comparative analysis of the windmilling performance of turbojet and turbofan engines[J].Journal of Propulsion and Power,1999,15(2):326-333.
    [3] 高扬,李密,高磊.基于相似原理的风车状态进口空气流量和内阻力估算方法[J].航空发动机,2018,44(2):98-102.
    GAO Yang,LI Mi,GAO Lei,Estimation method of windmilling inlet air flow and internal drag based on similarity principle[J].Aeroengine,2018,44(2):98-102.(in Chinese)
    [4] RIEGLER C,BAUER M,SCHULTE H.Validation of a mixed flow turbofan performance model in the sub-idle operating range[J].ASME Paper GT2003-38223,2003.
    [5] FERRER-VIDAL L E,PACHIDIS V,TUNSTALL R J.An enhanced compressor sub-idle map generation method[R].Global Power and Propulsion Society,GPPS-2018-0004,2018.
    [6] FUKSMAN I,SIRICA S.Real-time execution of a high fidelity aero-thermodynamic turbofan engine simulation[J].Journal of Engineering for Gas Turbine and Power,2012,134(5):054501.1-054501.4.
    [7] MISHRA R K,GOUDA G,VEDAPRAKASH B S.Relight envelope of a military gas turbine engine:an experimental study[R].ASME Paper GT2008-50256,2008.
    [8] PRASAD D,LORD W K.Internal losses and flow behavior of a turbofan stage at windmill[J].Journal of Turbomachinery,2010,132(3):031007.1-031007.10.
    [9] ORTOLAN A,COURTY-AUDREN S K,BINDER N,et al.Assessment of steady and unsteady full annulus simulations predictivity for a low-speed axial fan at load-controlled windmill[J].International Journal of Rotating Machinery,2018,2018:1-12.
    [10] ZACHOS P K,PACHIDIS V,CHARNLEY B,et al.Flow-field investigation of a compressor cascade at high incidence:Part Ⅰ pneumatic probe measurements[R].ASME Paper GT2009-59906,2009.
    [11] ORTOLAN A,COURTY-AUDREN S K,BINDER N,et al.Experimental and numerical flow analysis of low-speed fans at highly loaded windmilling conditions[J].Journal of Turbomachinery,2017,139(7):071009.1-071009.8.
    [12] GUNN E J,HALL C A.Loss and deviation in windmilling fans[J].Journal of Turbomachinery,2016,138(10):101002.1-101002.9.
    [13] DUFOUR G,ROSA N G,DUPLAA S.Validation and flow structure analysis in a turbofan stage at windmill[J].Journal of Power and Energy,2015,229(6):571-583.
    [14] GOTO T,KATO D,OHTA Y,et al.Unsteady flow structure in an axial compressor at windmill condition[R].ASME Paper GT2014-25609,2014.
    [15] MOHSEN M,OWIS F M,HASHIM A A.The impact of tandem rotor blades on the performance of transonic axial compressors[J].Aerospace Science and Technology,2017,67:237-248.
    [16] LU Hanan,LI Qiushi,PAN Tianyu,et al.Analysis and application of shroud wall optimization to an axial compressor with upstream boundary layer to improve aerodynamic performance[J].International Journal of Numerical Methods for Heat and Fluid Flow,2019,29(11):4237-4261.
    [17] MAO Xiaochen,LIU Bo,ZHAO Hang.Numerical investigation for the impact of single groove on the stall margin improvement and the unsteadiness of tip leakage flow in a counter-rotating axial flow compressor[J].Energies,2017,10(8):1-18.
    [18] STRAZISAR A J,WOOD J R,HATHAWAY M D,et al.Laser anemometer measurements in a transonic axial-flow fan rotor[R].NASA-TP-2879,1989.
    [19] HOSSEINI M,SUN ZHENZHONG,HE Xiao,et al.Effects of radial gap ratio between impeller and vaned diffuser on performance of centrifugal compressors[J].Applied Sciences,2017,7(7):7070728.1-7070728.27.
    [20] ZHAO Jiayi,WANG Zhiheng,ZHAO Yang,et al.Investigation of transient flow characteristics inside a centrifugal compressor for design and off-design conditions[J].Journal of Power and Energy,2018,232(4):364-385.
    [21] ZHANG Haideng,YU Xianjun,LIU Baojie,et al.Control of corner separation with plasma actuation in a high-speed compressor cascade[J].Applied Sciences,2017,7(5):7050465.1-7050465.16.
  • 加载中
计量
  • 文章访问数:  307
  • HTML浏览量:  4
  • PDF量:  479
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 刊出日期:  2020-07-28

目录

    /

    返回文章
    返回