留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋流杯近场液雾SMD的空间分布模型

高昭 刘玉英 顾鹏程

高昭, 刘玉英, 顾鹏程. 旋流杯近场液雾SMD的空间分布模型[J]. 航空动力学报, 2020, 35(9): 1812-1821. doi: 10.13224/j.cnki.jasp.2020.09.003
引用本文: 高昭, 刘玉英, 顾鹏程. 旋流杯近场液雾SMD的空间分布模型[J]. 航空动力学报, 2020, 35(9): 1812-1821. doi: 10.13224/j.cnki.jasp.2020.09.003
GAO Zhao, LIU Yuying, GU Pengcheng. Model of spatial SMD distribution of spray at the near-field of swirl cup[J]. Journal of Aerospace Power, 2020, 35(9): 1812-1821. doi: 10.13224/j.cnki.jasp.2020.09.003
Citation: GAO Zhao, LIU Yuying, GU Pengcheng. Model of spatial SMD distribution of spray at the near-field of swirl cup[J]. Journal of Aerospace Power, 2020, 35(9): 1812-1821. doi: 10.13224/j.cnki.jasp.2020.09.003

旋流杯近场液雾SMD的空间分布模型

doi: 10.13224/j.cnki.jasp.2020.09.003

Model of spatial SMD distribution of spray at the near-field of swirl cup

  • 摘要: 旋流杯液雾的空间分布特性对航空发动机燃烧室燃烧性能至关重要。基于旋流杯燃油雾化的物理过程及其近场液雾索太尔平均直径(SMD)空间分布呈“双峰”或“三峰”分布的基本特点,建立了旋流杯近场液雾SMD空间分布的半经验模型。该模型将旋流杯近场液雾分为中心区和边界区,其中中心区液雾采用离心喷嘴与内旋流的混合型雾化模型,边界区液雾采用文氏管液膜的气动雾化模型,同时将液雾SMD及SMD空间分布与正态分布函数相结合。根据空气压降不同,分别对压力雾化主导及气动雾化主导两种形式的旋流杯液雾SMD空间分布模型进行了验证,并对供液压力及空气压降的影响规律进行了预测分析,预测结果表明:随着供液压力和空气压降的增大,旋流杯液雾SMD呈现整体降低的趋势。

     

  • [1] LEFEBVRE A H.Gas turbine combustion[M].Boca Raton,US:CRC Press,1998.
    [2] 金如山.航空燃气轮机燃烧室[M].北京:宇航出版社,1988.
    [3] 甘晓华.航空燃气轮机燃油喷嘴技术[M].北京:国防工业出版社,2006.
    [4] LIU C,LIU F,YANG J,et al.Investigations of the effects of spray characteristics on the flame pattern and combustion stability of a swirl-cup combustor[J].Fuel Guildford,2015,139:529-536.
    [5] JENG S M,FLOHRE N M,MONGIA H.Swirl cup modeling-atomization[R].AIAA-2004-137,2004.
    [6] FLOHRE N.Experimental of spray atomization properties of an aircraft engine swirl cup[D].Cincinnati,US:University of Cincinnati,2003.
    [7] JENG S M,FLOHRE N,MONGIA H.Air temperature effects on non-reacting spray characteristics issued from a counter-rotating swirler[R].AIAA-2005-355,2005.
    [8] JENG S M,FLOHRE N,MONGIA H.Fluid property effects on non-reacting spray characteristics issued from a counter-rotating swirler[R].AIAA-2005-356,2005.
    [9] GIRIDHARAN M,MONGIA H,JENG S M.Swirl cup modeling:Part Ⅷ spray combustion in cfm-56 single-cup flame tube[R].AIAA-2003-319,2003.
    [10] SHANMUGADAS K P,CHAKRAVARTHY S R,CHIRANTHAN R N,et al.Characterization of wall filming and atomization inside a gas-turbine swirl injector[J].Experiments in Fluids,2018,59(10):1-26.
    [11] WANG H Y,MCDONELL V G,SAMUELSEN S.Influence of hardware design on the flow field structures and the patterns of droplet dispersion:Part Ⅰ mean quantities[J].Journal of Engineering for Gas Turbines and Power,1995,117(2):282-289.
    [12] 黄勇,郭志辉.某燃烧室头部旋流油雾场特性的实验研究[C]∥中国航空学会第五届动力年会论文集.北京:中国航空学会动力专业分会,2003:103-110.
    [13] 郭新华,林宇震,张驰,等.离心式同向双旋流器空气雾化喷嘴雾化特性研究[J].航空动力学报,2009,24(10):2249-2254.
    GUO Xinhua,LIN Yuzheng,ZHANG Chi,et al.Experimental investigation on atomization characteristic of an air blast atomizer with centrifugal nozzle and co-dual-swirl cup[J].Journal of Aerospace Powe,2009,24(10):2249-2254.(in Chinese)
    [14] HAN Y M,SEOL W S,LEE D S,et al.Effects of fuel nozzle displacement on pre-filming airblast atomization[J].Journal of Engineering for Gas Turbines and Power,2001,123(1):33-40.
    [15] WANG H,MCDONELL V,SAMUELSEN G.The influence of spray angle on the continuous-and discrete-phase flowfield downstream of an engine combustor swirl cup[R].AIAA-92-3231,1992.
    [16] ATESHKADI A,MCDONELL V,SAMUELSEN G.Effect of mixer geometry on fuel spray distribution,emissions and stability[R].AIAA-98-0247,1998.
    [17] WANG X,LIN Y,HU H,et al.Effect of swirl cup’s venturi shape on spray structure and ignition process[R].ASME Paper 2014-GT-25216,2014.
    [18] CHIN J S,RIZK N K,RAZDAN M K.Effect of inner and outer airflow characteristics on high liquid pressure prefilming airblast atomization[J].Journal of Propulsion and Power,2000,16(2):297-301.
    [19] RIZKALLA A A,LEFEBVRE A H.The influence of air and liquid properties on airblast atomization[J].Journal of Fluids Engineering,1975,97(3):316-320.
    [20] EL-SHANAWANY M S,LEFEBVRE A H.Airblast atomization:effect of linear scale on mean drop size[J].Journal of Energy,1980,4(4):184-189.
    [21] LEFEBVRE A H.Twin-fluid atomization:factors influencing mean drop size[J].Atomization and Sprays,1992,2(2):101-119.
    [22] KULKARNI A P,DESHMUKH D.Spatial drop-sizing in airblast atomization-an experimental study[J].Atomization and Sprays,2017,27(11):949-961.
    [23] LEFEBVRE A H.Energy considerations in twin-fluid atomization[R].ASME Paper 90-GT-003,1997.
    [24] BATARSEH F Z M.Spray generated by an airblast atomizer:atomization,propagation and aerodynamic instability[D].Darmstadt,Germany:Technische Universitt Darmstadt,2009.
    [25] BARARSEH F Z,ROISMAN I V,TROPEA C.Characterization of a spray generated by an airblast atomizer with prefilmer[J].Atomization and Sprays,2010,20(10):887-903.
    [26] HOLZ S,CHAUSSONNET G,GEPPERTH S,et al.Comparison of the primary atomization model PAMELA with drop size distributions of an industrial prefilming airblast nozzle[R].Brighton,UK:International Conference for Liquid Atomization and Spray Systems (ILASS),2016.
    [27] HAN Y M,YOON M S,SEOL W S,et al.An experimental study on modeling of fuel atomization for simulating the idle regime of a gas turbine combustor by atmospheric testing[R].ASME Paper 97-GT-152,1997.
    [28] RIZK N,MONGIA H.Performance of hybrid airblast atomizers under low power conditions[R].AIAA-92-0463,1992.
  • 加载中
计量
  • 文章访问数:  226
  • HTML浏览量:  7
  • PDF量:  422
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-09
  • 刊出日期:  2020-09-28

目录

    /

    返回文章
    返回