留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正十四烷层流燃烧特性的实验

刘宇 王金铎 谷午

刘宇, 王金铎, 谷午. 正十四烷层流燃烧特性的实验[J]. 航空动力学报, 2020, 35(10): 2036-2045. doi: 10.13224/j.cnki.jasp.2020.10.003
引用本文: 刘宇, 王金铎, 谷午. 正十四烷层流燃烧特性的实验[J]. 航空动力学报, 2020, 35(10): 2036-2045. doi: 10.13224/j.cnki.jasp.2020.10.003
LIU Yu, WANG Jinduo, GU Wu. Experiment on laminar combustion characteristics of n-tetradecane[J]. Journal of Aerospace Power, 2020, 35(10): 2036-2045. doi: 10.13224/j.cnki.jasp.2020.10.003
Citation: LIU Yu, WANG Jinduo, GU Wu. Experiment on laminar combustion characteristics of n-tetradecane[J]. Journal of Aerospace Power, 2020, 35(10): 2036-2045. doi: 10.13224/j.cnki.jasp.2020.10.003

正十四烷层流燃烧特性的实验

doi: 10.13224/j.cnki.jasp.2020.10.003
基金项目: 国家自然科学基金(51606129,51676132)

Experiment on laminar combustion characteristics of n-tetradecane

  • 摘要: 采用定容燃烧实验平台获得初始压力为0.1 MPa、初始温度为420、450 K和480 K,当量比为0.8~1.4工况下正十四烷/空气预混气层流燃烧速度和马克斯坦长度,并分析了初始温度、当量比等因素的影响。研究发现:初始温度和当量比的增加对预混气球形火焰稳定性影响较小,在初始温度为480 K、当量比为1.3工况下,火焰内部无裂纹或胞状结构;初始温度的增加能够加快火焰传播速度,促进火焰锋面形成,其影响在稀混合气中更为显著;随着当量比的增加,正十四烷预混燃烧火焰马克斯坦长度减小,火焰稳定性变差;随着初始温度的增加,正十四烷马克斯坦长度减小,无拉伸火焰传播速度和层流燃烧速度增加,另外,与RP-3航空煤油层流燃烧速度对比发现,正十四烷层流燃烧速度整体偏高。

     

  • [1] 马洪安,解茂昭,曾文,等.航空发动机燃烧室燃烧过程与排放物生成的反应动力学数值模拟[J].航空动力学报,2013,28(2):297-306. MA Hongan,XIE Maozhao,ZENG Wen,et al.Reaction kinetic numerical simulation of combustion process and emission formation in aero-engine combustor[J].Journal of Aerospace Power,2013,28(2):297-306.(in Chinese)
    [2] 蔡文祥,赵坚行,胡好生,等.数值研究环形回流燃烧室紊流燃烧流场[J].航空动力学报,2010,25(5):993-998. CAI Wenxiang,ZHAO Jianxing,HU Haosheng,et al.Numerical research of turbulent combustion in reversed-type annular combustor[J].Journal of Aerospace Power,2010,25(5):993-998.(in Chinese)
    [3] 肖保国,杨顺华,赵慧勇,等.RP-3航空煤油燃烧的详细和简化化学动力学模型[J].航空动力学报,2010,25(9):1948-1955. XIAO Baoguo,YANG Shunhua,ZHAO Huiyong,et al.Detailed and reduced chemical kinetic mechanisms for RP-3 aviation kerosene combustion[J].Journal of Aerospace Power,2010,25(9):1948-1955.(in Chinese)
    [4] 郑东,于维铭,钟北京.RP-3航空煤油替代燃料及其化学反应动力学模型[J].物理化学学报,2015,31(4):636-642. ZHENG Dong,YU Weiming,ZHONG Beijing.RP-3 aviation kerosene surrogate fuel and the chemical reaction kinetic model[J].Acta Physico-Chimica Sinica,2015,31(4):636-642.(in Chinese)
    [5] 戴超,王亚军,颜应文,等.一种基于敏感性分析的RP-3替代燃料简化机理[J].南京航空航天大学学报,2015,47(4):579-587. DAI Chao,WANG Yajun,YAN Yingwen,et al.Reduced mechanism of surrogate fuel for RP-3 kerosene based on sensitivity analysis[J].Journal of Nanjing University of Aeronautics and Astronautics,2015,47(4):579-587.(in Chinese)
    [6] CHARLES K W,WILLIAM J P,OLIVIER H,et al.A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane[J].Combustion and Flame,2009,156(1):181-199.
    [7] 刘建文,姚通,钟北京,等.正十四烷低温点火及燃烧机理的构建和简化[J].推进技术,2017,38(1):119-124. LIU Jianwen,YAO Tong,ZHONG Beijing,et al.Development and reduction of n-tetradecane mechanism for low temperature ignition and combustion[J].Journal of Propulsion Technology,2017,38(1):119-124.(in Chinese)
    [8] SHEN H S,STEINBERG J,VANDEROVER J,et al.A shock tube study of the ignition of n-heptane,n-decane,n-dodecane,and n-tetradecane at elevated pressures[J].Energy and Fuels,2009,23(5):2482-2489.
    [9] CAVALIERE A,CIAJOLO A,D’ANNA A,et al.Autoignition of n-heptane and n-tetradecane in engine-like conditions[J].Combustion and Flame,1993,93(3):279-286.
    [10] ZENG M R,YUAN W H,LI W,et al.A comprehensive experimental and kinetic modeling study of n-tetradecane combustion[J].Energy and Fuels,2017,31(11):12712-12720.
    [11] LI B,LIU N,ZHAO R,et al.Flame propagation of mixtures of air with high molecular weight neat hydrocarbons and practical jet and diesel fuels[J].Proceedings of the Combustion Institute,2013,34(1):727-733.
    [12] MZ-AHMED A,DAGAUT P,DAYMA G,et al.Experimental study of the oxidation of n-tetradecane in a jet-stirred reactor (JSR) and detailed chemical kinetic modeling[J].Combustion Science and Technology,2014,186(4/5):594-606.
    [13] HU E J,HUANG Z H,HE J J,et al.Experimental and numerical study on laminar burning characteristics of premixed methane/hydrogen/air flames[J].International Journal of Hydrogen Energy,2009,34(11):4876-4888.
    [14] ZENG W,LIU J,LIU Y,et al.The effect of hydrogen addition on the combustion characteristics of RP-3 kerosene/air premixed flames[EB/OL].[2020-02-04].http://doi.org/10.3390/en10081107.
    [15] HUANG Z,WANG Q,YU J,et al.Measurement of laminar burning velocity of dimethyl ether-air premixed mixtures[J].Fuel,2007,86(15):2360-2366.
    [16] BURKE M P,CHEN Z,JU Y G,et al.Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames[J].Combustion and Flame,2009,156(4):771-779.
    [17] BRADLEY D,HICKS R A,LAWES M,et al.The measurement of laminar burning velocities and Markstein lengths for iso-octane/air and iso-octane/n-heptane/air mixtures at elevated temperatures and pressures in an explosion bomb[J].Combustion and Flame,1998,115(1):126-144.
    [18] FRANKEL M L,SIVASHINSKY G I.On effects due to thermal expansion and Lewis number in spherical flame propagation[J].Combustion Science and Technology,1983,31(3/4):131-138.
    [19] CHEN Z.On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames[J].Combustion and Flame,2011,158(2):291-300.
    [20] 刘宇,孙震,汤卓,等.初始温度对CH4/RP-3航空煤油混合燃料层流燃烧特性的影响[J].航空动力学报,2019,34(2):348-356.
  • 加载中
计量
  • 文章访问数:  237
  • HTML浏览量:  4
  • PDF量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-24
  • 刊出日期:  2020-10-28

目录

    /

    返回文章
    返回