留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速自旋飞行体的气动加热特性

张俊 许哲 贾广臣

张俊, 许哲, 贾广臣. 高速自旋飞行体的气动加热特性[J]. 航空动力学报, 2020, 35(10): 2144-2151. doi: 10.13224/j.cnki.jasp.2020.10.014
引用本文: 张俊, 许哲, 贾广臣. 高速自旋飞行体的气动加热特性[J]. 航空动力学报, 2020, 35(10): 2144-2151. doi: 10.13224/j.cnki.jasp.2020.10.014
ZHANG Jun, XU Zhe, JIA Guangchen. Aero-heating characteristics of flight body with high spinning speed[J]. Journal of Aerospace Power, 2020, 35(10): 2144-2151. doi: 10.13224/j.cnki.jasp.2020.10.014
Citation: ZHANG Jun, XU Zhe, JIA Guangchen. Aero-heating characteristics of flight body with high spinning speed[J]. Journal of Aerospace Power, 2020, 35(10): 2144-2151. doi: 10.13224/j.cnki.jasp.2020.10.014

高速自旋飞行体的气动加热特性

doi: 10.13224/j.cnki.jasp.2020.10.014
基金项目: 国家自然科学基金(51775329); 上海市科委创新行动计划(17050502000); 上海海洋大学科技发展专项基金(A2-2006-20-200210)

Aero-heating characteristics of flight body with high spinning speed

  • 摘要: 一种典型的弹箭类高速自旋飞行体为例,选取目标在超声速、跨声速、亚声速飞行状态下的弹道计算数据作为来流条件,结合滑移网格和多坐标系法,采用基于密度的耦合隐式算法、Roe-FDS(flux difference splitting)通量格式和SST(shear stress transfer) k -ω湍流模型,对飞行体的外流场进行了热流模拟研究。重点分析了目标在高速自旋飞行条件下的壁面压力、温度、气流密度、热流率、湍流动能等变化规律,并与不考虑飞行体高速自旋的流场进行了对比研究。研究结果表明:在高速自旋飞行条件下,飞行体表面的流线相互干扰,贴壁气流对飞行体产生的扰动更加剧烈,飞行体尾部的气流集聚效应明显,湍流发展与演化过程更加复杂,飞行体壁面的气流速度、压力、温度、热流率均高于无转速飞行情况,尤其在超声速飞行条件下的差异显著。

     

  • [1] OZAWA T,SUZUKI T,FUJITA K.Aerodynamic measurements and computational analyses in hypersonic rarefied flows[J].AIAA Journal,2015,53(11):3327-3337.
    [2] ALBAN C J,PALAZOTTO A N,RUTLEDGE J L.Thermal considerations with respect to sliding contact at high speed[J].Journal of Thermophysics and Heat Transfer,2016,30(1):54-61.
    [3] 季卫栋,王江峰,樊孝峰,等.高超声速流场与结构温度场一体化计算方法[J].航空动力学报,2016,31(1):153-160. JI Weidong,WANG Jiangfeng,FAN Xiaofeng,et al.Algorithms for hypersonic fluid-structural-thermal integrated[J].Journal of Aerospace Power,2016,31(1):153-160.(in Chinese)
    [4] EYI S,HANQUIST K M,BOYD I D.Aerothermodynamic design optimization of hypersonic vehicles[J].Journal of Thermophysics and Heat Transfer,2019,33(2):392-406.
    [5] QIN Q H,XU J L,GUO S.Fluid-thermal analysis of aerodynamic heating over spiked blunt body configurations[J].Acta Astronautica,2017,132(3):230-242.
    [6] 夏新林,艾青,任德鹏,等.飞机整体瞬态热状况的数值仿真研究[J].航空学报,2007,28(3):513-518. XIA Xinlin,AI Qing,REN Depeng,et al.Numerical analysis on the transient thermal status of aircraft[J].Acta Aeronautica et Astronautica Sinica,2007,28(3):513-518.(in Chinese)
    [7] KNIGHT D,CHAZOT O,AUSTIN J,et al.Assessment of predictive capabilities for aerodynamic heating in hypersonic flow[J].Progress in Aerospace Sciences,2017,90(4):39-53.
    [8] GERDROODBARY M B,BISHEHSARI S,HOSSEI-NALIPOUR S M,et al.Transient analysis of counterflowing jet over highly blunt cone in hypersonic flow[J].Acta Astronautica,2012,73(4):38-48.
    [9] 张俊,刘荣忠,郭锐,等.高速旋转飞行弹丸外弹道表面温度场研究[J].兵工学报,2013,34(4):425-430. ZHANG Jun,LIU Rongzhong,GUO Rui,et al.Surface temperature field of projectile flying at high rotational speed in exterior ballistic[J].Acta Amamentarii,2013,34(4):425-430.(in Chinese)
    [10] 张俊,刘荣忠,郭锐,等.高速飞行弹箭目标表面动态热辐射[J].航空动力学报,2017,32(2):289-297. ZHANG Jun,LIU Rongzhong,GUO Rui,et al.Surface dynamic thermal radiation of high-speed flying projectile[J].Journal of Aerospace Power,2017,32(2):289-297.(in Chinese)
    [11] SAVINO R,FUMO M D,PATERNA D,et al.Aero-thermodynamic study of UHTC-based thermal protection systems[J].Aerospace Science and Technology,2005,9(2):151-160.
    [12] MAHULIKAR S P,SONAWANE H R,RAO G A.Infrared signature studies of aerospace vehicles[J].Progress in Aerospace Sciences,2007,43(7/8):218-245.
    [13] SILTON S I.Navier-stokes computations for a spinning projectile from subsonic to supersonic speeds[J].Journal of Spacecraft and Rockets,2005,42(2):223-231.
    [14] SPIRITO D J.CFD prediction of Magnus effect in subsonic to supersonic flight[R].US Army Research Laboratory,ARL-TR-4929,2009.
    [15] 刘周,谢立军,杨云军,等.弹丸旋转空气动力效应非定常数值模拟[J].航空学报,2016,37(5):1401-1410. LIU Zhou,XIE Lijun,YANG Yunjun,et al.Unsteady numerical simulation of aerodynamic effect of a spinning projectile[J].Acta Aeronautica et Astronautica Sinica,2016,37(5):1401-1410.(in Chinese)
    [16] 冈敦殿,易仕和,赵云飞.超声速平板圆台突起物绕流实验和数值模拟研究[J].物理学报,2015,64(5):1-8. GANG Dundian,YI Shihe,ZHAO Yunfei.Experimental and numerical studies of supersonic flow over circular protuberances on a flat plate[J].Acta Physica Sinica,2015,64(5):1-8.(in Chinese)
    [17] 陈东阳.超音速旋转弹箭气动特性及流固耦合计算分析[D].南京:南京理工大学,2013. CHEN Dongyang.Aerodynamic characteristics and fluid-structure interaction computations and analysis of supersonic spinning flying vehicle[D].Nanjing:Nanjing University of Science and Technology,2013.(in Chinese)
    [18] 马杰,陈志华,姜孝海.高速旋转条件下的弹丸气动特性研究[J].弹道学报,2015,27(2):1-6. MA Jie,CHEN Zhihua,JIANG Xiaohai.Aerodynamic characteristics of a projectile with high spinning speeds[J].Journal of Ballistics,2015,27(2):1-6.(in Chinese)
    [19] 郑京良.高超声速飞行器气动加热与热防护系统性能的仿真与试验研究[D].上海:上海交通大学,2009. ZHENG Jingliang.Simulation and test of aeroheating and thermal response of TPS for hypersonic vehicle[D].Shanghai:Shanghai Jiao Tong University,2009.(in Chinese)
    [20] 张俊,刘荣忠,郭锐,等.飞行弹丸表面温度的两种数值计算方法[J].南京理工大学学报,2013,37(4):585-589. ZHANG Jun,LIU Rongzhong,GUO Rui,et al.Two numerical methods to calculate surface temperature of flying projectile[J].Journal of Nanjing University of Science and Technology,2013,37(4):585-589.(in Chinese)
    [21] 张俊,田中旭,韦甘,等.无控飞行弹箭气动加热特性[J].探测与控制学报,2013,42(2):311-316.
  • 加载中
计量
  • 文章访问数:  172
  • HTML浏览量:  3
  • PDF量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-04
  • 刊出日期:  2020-10-28

目录

    /

    返回文章
    返回