留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针栓式喷注器液膜下漏率预估模型

王凯 雷凡培 杨岸龙

王凯, 雷凡培, 杨岸龙. 针栓式喷注器液膜下漏率预估模型[J]. 航空动力学报, 2020, 35(10): 2223-2234. doi: 10.13224/j.cnki.jasp.2020.10.023
引用本文: 王凯, 雷凡培, 杨岸龙. 针栓式喷注器液膜下漏率预估模型[J]. 航空动力学报, 2020, 35(10): 2223-2234. doi: 10.13224/j.cnki.jasp.2020.10.023
WANG Kai, LEI Fanpei, YANG Anlong. Prediction model of leakage rate of liquid sheet in pintle injector[J]. Journal of Aerospace Power, 2020, 35(10): 2223-2234. doi: 10.13224/j.cnki.jasp.2020.10.023
Citation: WANG Kai, LEI Fanpei, YANG Anlong. Prediction model of leakage rate of liquid sheet in pintle injector[J]. Journal of Aerospace Power, 2020, 35(10): 2223-2234. doi: 10.13224/j.cnki.jasp.2020.10.023

针栓式喷注器液膜下漏率预估模型

doi: 10.13224/j.cnki.jasp.2020.10.023
基金项目: 国家自然科学基金(11502186)

Prediction model of leakage rate of liquid sheet in pintle injector

  • 摘要: 为了对针栓式喷注器液膜下漏率进行准确预测,基于针栓式喷注单元喷雾场结构分析,结合理论推导、数值仿真及试验研究3种方法建立了液膜液束各自变形的相对变形量模型;在考虑液膜液束变形的基础上,引入相互影响系数表征多喷注单元间相互影响,建立了实际阻塞率和实际下漏率模型。通过数值仿真及试验结果的多参数充分验证,结果表明:理论预估模型与数值仿真及试验结果一致性较好。液膜液束相互作用下,液膜绕液束流动和液束根部横截面前后缘位置移动不同步导致的展向变宽分别是液膜和液束发生变形的主因,且有效动量比越大,液膜相对变形越大,液束相对变形越小。对于一定阻塞率的几何结构,结果表明:下漏率随着有效动量比的增大而增大,增大趋势呈先快后缓,且实际下漏率均小于几何下漏率,这是由膜束变形导致的实际阻塞率比几何阻塞率更大造成的。另外,发现液膜下漏率仅与表征流场结构(有效动量比)及几何结构的无量纲参数(液膜厚度与液束直径之比和阻塞率)有关,与喷射速度的绝对值无关,并给出了模型中的常系数供工程设计预估使用,对从设计初期就考虑针栓头的热防护问题具有重要的指导意义。

     

  • [1] LEE S,KIM D,KOO J,et al.Spray characteristics of a pintle injector based on annular orifice area[J].Acta Astronautica,2020,167:201-211.
    [2] ELVERUM G W,Jr,STAUDHAMMER P,et al.The descent engine for the lunar module[R].Washington D C:the 3rd Propulsion Joint Specialist Conference,1967.
    [3] GILROY R,SACKHEIM R.The lunar module descent engine a historical summary[R].AIAA 89-2385,1989.
    [4] 袁宇.猎鹰火箭发动机设计特点[J].太空探索,2017(7):19-20. YUAN Yu.Design features of falcon rocket engine[J].Space Exploration,2017(7):19-20.(in Chinese)
    [5] 张雪松.猎鹰火箭的基础:不断升级的梅林发动机[J].卫星与网络,2017(6):40-41. ZHANG Xuesong.Foundation of falcon rocket:upgrading Merlin engine[J].Satellite and Network,2017(6):40-41.(in Chinese)
    [6] 安鹏,姚世强,王京丽,等.针栓式喷注器的特点及设计方法[J].导弹与航天运载技术,2016(3):50-54. AN Peng,YAO Shiqiang,WANG Jingli,et al.Characteristics and design of pintle injector[J].Missiles and Space Vehicles,2016(3):50-54.(in Chinese)
    [7] HEISTER S D.Pintle injectors,handbook of atomization and sprays:theory and applications[M].New York:Springer,2011:647-655.
    [8] BOETTCHER P A,DAMAZO J S,SHEPHERD J E,et al.Visualization of transverse annular jets[R].Minneapolis,Minnesota,USA:the 62nd Annual Meeting of the American Physical Society (APS) Division of Fluid Dynamic,2009.
    [9] 刘昌波.针栓式喷注器雾化特性的多尺度仿真研究[D].西安:西安航天动力研究所,2014. LIU Changbo.Multiscale simulations of primary atomization for the pintle injector[D].Xi’an:Xi’an Aerospace Propulsion Institute,2014.(in Chinese)
    [10] 王凯,雷凡培,杨岸龙,等.针栓式喷注单元膜束撞击雾化混合过程数值模拟[J].航空学报,2020,41(9):123802.1-123802.15. WANG Kai,LEI Fanpei,YANG Anlong,et al.Numerical simulation on spray and mixing process of impingement between sheet and jet in pintle injector element[J].Acta Aeronautica et Astronautica Sinica,2020,41(9):123802.1-123802.15.(in Chinese)
    [11] NINISH S,VAIDYANATHAN A,NANDAKUMAR K.Spray characteristics of liquid-liquid pintle injector[J].Experimental Thermal and Fluid Science,2018,97:324-340.
    [12] 成鹏.变推力火箭发动机喷雾燃烧动态过程研究[D].长沙:国防科技大学,2018. CHENG Peng.The dynamics of spray combustion in variable thrust rocket engines[D].Changsha:National University of Defense Technology,2018.(in Chinese)
    [13] 李进贤,岳春国,侯晓,等.针栓式变推力火箭发动机内流场数值仿真研究[J].计算机仿真,2009,26(8):49-52,88. LI Jinxian,YUE Chunguo,HOU Xiao,et al.Numerical simulation of inner flow field of a pintle injector variable thrust rocket engine[J].Computer Simulation,2009,26(8):49-52,88.(in Chinese)
    [14] 张连博,毛晓芳,汪凤山,等.针栓喷注式MMH/NTO推力室燃烧及传热数值仿真[J].推进技术,2015,36(10):1487-1494. ZHANG Lianbo,MAO Xiaofang,WANG Fengshan,et al.Numerical simulation of pintle thruster combustion and heat transfer for MMH/NTO hypergolic bipropellant[J].Journal of Propulsion Technology,2015,36(10):1487-1494.(in Chinese)
    [15] FANG X X,SHEN C B.Study on atomization and combustion characteristics of LOX/methane pintle injectors[J].Acta Astronautica,2017,136:369-379.
    [16] KIM H,KANG H,KWON S.Liquid sheet-sheet impinging structure for pintle injector with nontoxic hypergolic bipropellant[J].Journal of Propulsion and Power,2019,36(4):1-6.
    [17] SAKAKIV K,KAKUDO H,NAKAYA S,et al.Combustion characteristics of ethanol/liquid-oxygen rocket-engine combustor with planar pintle injector[J].Journal of Propulsion and Power,2017,33(2):514-521.
    [18] VASQUES B,HAIDN O.Effect of pintle injector element geometry on combustion in a liquid oxygen/liquid methane rocket engine[R].Gothenburg,Sweden:the 7th European Conference for Aeronautics and Aerospace Sciences (Eucass),2017.
    [19] MUELLER T.Pintle injector tip with active cooling:US 7503511B2[P].2009-03-17.
    [20] WOO S S.Pintle-swirl hybrid injection device:US 10018361B2[P].2018-07-10.
    [21] 刘昌波,周立新,雷凡培.雾化过程的数值模拟研究综述[J].火箭推进,2014,40(1):10-17. LIU Changbo,ZHOU Lixin,LEI Fanpei.Overview on numerical simulations of primary atomization[J].Journal of Rocket Propulsion,2014,40(1):10-17.(in Chinese)
    [22] 王凯,杨国华,李鹏飞,等.离心式喷嘴内部流动过程数值仿真分析[J].火箭推进,2016,42(4):14-20. WANG Kai,YANG Guohua,LI Pengfei,et al.Numerical simulation of internal flow process in pressure swirl injector[J].Journal of Rocket Propulsion,2016,42(4):14-20.(in Chinese)
    [23] 王凯,雷凡培,李鹏飞,等.壁面边界对撞击合成动量角的影响研究[J].推进技术,2019,40(10):2288-2295. WANG Kai,LEI Fanpei,LI Pengfei,et al.Effects of wall boundary on the resultant momentum angle of impinging jets[J].Journal of Propulsion Technology,2019,40(10):2288-2295.(in Chinese)
    [24] 王凯,雷凡培,张波涛,等.针栓式喷注器单元雾化角模型分析研究[J].航空学报,2020,41(10):123622.1-123622.15.
  • 加载中
计量
  • 文章访问数:  151
  • HTML浏览量:  8
  • PDF量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-29
  • 刊出日期:  2020-10-28

目录

    /

    返回文章
    返回