留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞行器发动机热防护与发电一体化系统

姜培学 张富珍 胥蕊娜 祝银海

姜培学, 张富珍, 胥蕊娜, 祝银海. 高超声速飞行器发动机热防护与发电一体化系统[J]. 航空动力学报, 2021, 36(1): 1-7. doi: 10.13224/j.cnki.jasp.2021.01.001
引用本文: 姜培学, 张富珍, 胥蕊娜, 祝银海. 高超声速飞行器发动机热防护与发电一体化系统[J]. 航空动力学报, 2021, 36(1): 1-7. doi: 10.13224/j.cnki.jasp.2021.01.001
JIANG Peixue, ZHANG Fuzhen, XU Ruina, ZHU Yinhai. Integrated thermal protection and power generation system of hypersonic vehicle engine[J]. Journal of Aerospace Power, 2021, 36(1): 1-7. doi: 10.13224/j.cnki.jasp.2021.01.001
Citation: JIANG Peixue, ZHANG Fuzhen, XU Ruina, ZHU Yinhai. Integrated thermal protection and power generation system of hypersonic vehicle engine[J]. Journal of Aerospace Power, 2021, 36(1): 1-7. doi: 10.13224/j.cnki.jasp.2021.01.001

高超声速飞行器发动机热防护与发电一体化系统

doi: 10.13224/j.cnki.jasp.2021.01.001
基金项目: 国家自然科学基金创新研究群体项目(51621062); 国家自然科学基金重点项目(51536004)

Integrated thermal protection and power generation system of hypersonic vehicle engine

  • 摘要: 在对高超声速飞行器的热防护和机载设备电能需求的综合考虑下,立足发动机能量管理优化,结合CO2的物性特点,提出了以超临界CO2为循环工质的高效热防护与高温发电一体化系统。此一体化方案可以在实现发动机热防护的同时,提供电能、并减少冷却用燃油流量。基于燃油为该一体化系统的唯一热沉,通过理论分析和计算,提出了两个一体化系统,通过对一体化系统的优化分析,给出了提高一体化系统性能的措施:尽量提高燃油在CO2冷却器中被加热的终态温度以及采用回热来提高CO2闭式布雷顿循环的性能,该系统的热效率可达到17%。相对于采用蓄电池和燃料电池为机载设备供电的方案,当飞行器飞行时间为30 min,该一体化系统的净增质量分别降低85%和68%,体积分别降低81%和59%。

     

  • [1] SUTTON G P,BIBLARZ O.Rocket propulsion elements[M].Hoboken,New Jersey:John Wiley and Sons,2016.
    [2] 牛文敬,连文磊,林灵矫.基于热管技术的飞机电作动机构散热特性[J].航空动力学报,2020,35(4):711-721. NIU Wenjing,LIAN Wenlei,LIN Lingjiao,et al.Cooling performance of electric actuating mechanism on,aircrafts based on heat pipes[J].Journal of Aerospace Power,2020,35(4):711-721.(in Chinese)
    [3] 韩海涛,陈智,胡龙飞,等.基于高温热管的超燃燃烧室热防护结构[J].航空动力学报,2017,32(5):1043-1050. HAN Haitao,CHEN Zhi,HU Longfei,et al.High temperature heat pipe enhanced thermal protection structure for scramjet combustion chamber[J].Journal of Aerospace Power,2017,32(5):1043-1050.(in Chinese)
    [4] 马坤,朱亮,陈雄.高超声速流场支杆射流减阻降热的流热耦合[J].航空动力学报,2020,35(4):793-804. MA Kun,ZHU Liang,CHEN Xiong.Fluid-thermal coupling on drag and heat reduction induced by spike and jet in hypersonic flow field[J].Journal of Aerospace Power,2020,35(4):793-804.(in Chinese)
    [5] 闫帅,祝银海,姜培学,等.超临界压力下正癸烷在多孔介质中结焦实验研究[J].推进技术,2018,39(4):935-941. YAN Shuai,ZHU Yinhai,JIANG Peixue,et al.Experiment on coke deposition of supercritical n-decane in porous media[J].Journal of Propulsion Technology,2018,39(4):935-941.(in Chinese)
    [6] 熊宴斌,祝银海,姜培学,等.单相液体发汗冷却规律实验[J].航空动力学报,2013,28(9):1956-1961. XIONG Yanbin,ZHU Yinhai,JIANG Peixue et al.Experiment of transpiration cooling rules of single phase liquid[J].Journal of Aerospace Power,2013,28(9):1956-1961.(in Chinese)
    [7] SEGAL C.The scramjet engine:processes and characteristics[M].Cambridge,UK:Cambridge University Press,2009.
    [8] 鲍文,秦江,于达仁,等.回热式闭式布莱顿超燃冲压发动机冷却循环系统:CN 101576024A[P].2009-11-11.
    [9] QIN J,ZHOU W X,BAO W,et al.Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet[J].International Journal of Hydrogen Energy,2010,35(1):356-364.
    [10] 李新春,王中伟.高超声速飞行器的热电技术热管理系统参数[J].国防科技大学学报,2016,38(2):43-47,86. LI Xinchun,WANG Zhongwei.Parametric of an integrated thermoelectric generation thermal management system for hypersonic vehicle[J].Journal of National University of Defense Technology,2016,38(2):43-47,86.(in Chinese)
    [11] 李新春,王中伟.超燃冲压发动机壁面热量的利用潜力分析[J].推进技术,2017,38(2):275-280. LI Xinchun,WANG Zhongwei.Analysis of potential usage for heat of scramjet wall[J].Journal of Propulsion Technology,2017,38(2):275-280.(in Chinese)
    [12] 张富珍,姜培学,胥蕊娜,等.基于回热器温度滑移匹配的以CO2为工质的布雷顿循环优化分析[J].热能动力工程,2017,32(8):11-16. ZHANG Fuzhen,JIANG Peixue,XU Ruina,et al.Optimization analysis of a Brayton cycle using CO2 as working substance based on temperature glide matching in heat exchanger[J].Journal of Engineering for Thermal Energy and Power,2017,32(8):11-16.(in Chinese)
    [13] ZHANG F Z,ZHU Y H,LI C H,et al.Thermodynamic optimization of heat transfer process in thermal systems using CO2 as the working fluid based on temperature glide matching[J].Energy,2018,151:376-386.
    [14] FEHER E G.The supercritical thermodynamic power cycle[J].Energy Conversion,1968,8(2):85-90.
    [15] AHN Y,LEE J,KUM S G,et al.Design consideration of supercritical CO2 power cycle integral experiment loop[J].Energy,2015,86:115-127.
    [16] AHN Y,BAE S J,KIM M,et al.Review of supercritical CO2 power cycle technology and current status of research and development[J].Nuclear Engineering and Technology,2015,47(6):647-661.
    [17] PASCH J,CONBOY T,FLEMING D,et al.Supercritical CO2 recompression Brayton cycle:complete assembly description[R].Sandia Report,SAND2012-9546,2012.
    [18] UTAMURA M,HASUIKE H,OGAWA K,et al.Demonstration of supercritical CO2 closed regenerative Brayton cycle in a bench scale experiment[R].ASME Paper GT2012-68697,2012.
  • 加载中
计量
  • 文章访问数:  363
  • HTML浏览量:  5
  • PDF量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-30
  • 刊出日期:  2021-01-28

目录

    /

    返回文章
    返回