留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋桨/机翼耦合下的目标螺旋桨滑流设计

薛臣 周洲 范中允 李旭

薛臣, 周洲, 范中允, 李旭. 螺旋桨/机翼耦合下的目标螺旋桨滑流设计[J]. 航空动力学报, 2021, 36(1): 104-118. doi: 10.13224/j.cnki.jasp.2021.01.013
引用本文: 薛臣, 周洲, 范中允, 李旭. 螺旋桨/机翼耦合下的目标螺旋桨滑流设计[J]. 航空动力学报, 2021, 36(1): 104-118. doi: 10.13224/j.cnki.jasp.2021.01.013
XUE Chen, ZHOU Zhou, FAN Zhongyun, LI Xu. Design of target propeller slipstream under propeller-wing interaction[J]. Journal of Aerospace Power, 2021, 36(1): 104-118. doi: 10.13224/j.cnki.jasp.2021.01.013
Citation: XUE Chen, ZHOU Zhou, FAN Zhongyun, LI Xu. Design of target propeller slipstream under propeller-wing interaction[J]. Journal of Aerospace Power, 2021, 36(1): 104-118. doi: 10.13224/j.cnki.jasp.2021.01.013

螺旋桨/机翼耦合下的目标螺旋桨滑流设计

doi: 10.13224/j.cnki.jasp.2021.01.013
基金项目: 装备预研项目(41411020401,41411010403); 大院大所创新计划(TC2018DYDS24)

Design of target propeller slipstream under propeller-wing interaction

  • 摘要: 针对分布式电推进(DEP)构型等具有多螺旋桨特征的飞行器,发展了通过优化螺旋桨滑流来达到提高机翼升阻比的方法。提出了一种可以获得目标诱导速度分布的螺旋桨设计方法,基于面元法发展了一套可以快速计算螺旋桨机翼干扰的气动程序Prop-wing,基于Kriging代理模型建立了一套高效的优化方法获得最优的螺旋桨诱导速度分布提高机翼升阻比。优化结果显示当拉力保持相同时,螺旋桨桨毂附近的轴向诱导速度越大,下游机翼的升阻比越大。在不对螺旋桨功率进行限制时,优化后的螺旋桨使得下游的翼段阻力相比较安装最小能量损失设计的螺旋桨的翼段减少了1875%,而翼段升阻比提升达到了2563%,当优化螺旋桨功率被限制后,翼段升阻比提升为962%。虽然升阻比的提升需要付出螺旋桨效率下降的代价,但是研究还是给分布式动力滑流的利用提供了一种思路。

     

  • [1] FLITTIE K,CURTIN B.Pathfinder solar-powered aircraft flight performance[R].Simi Valley,California:the 23rd Atmospheric Flight Mechanics Conference,1998.
    [2] NOLL T,BROWN J,PEREZ D M,et al.Investigation of the helios prototype aircraft mishap report:Voume Ⅰ[R].Hampton,VA:NASA,2004.
    [3] 张健,张德虎.高空长航时太阳能无人机总体设计要点分析[J].航空学报,2016,37(增刊1):1-7. ZHANG Jian,ZHANG Dehu.Essentials of configuration design of hale solar-powered UAVs[J].Acta Aeronautica et Astronautica Sinica,2016,37(Suppl.1):1-7.(in Chinese)
    [4] STOLL A M,BEVIRT J B,MOORE M D,et al.Drag reduction through distributed electric propulsion[C]∥Proceedings of AIAA Aviation Technology,Integration,and Operations Conference.Atlanta,GA:AIAA,2014:16-20.
    [5] STOLL A M.Comparison of CFD and experimental results of the LEAPTech distributed electric propulsion blown wing[C]∥Proceedings of AIAA Aviation Technology,Integration,and Operations Conference.Atlanta,GA:AIAA,2013:22-26.
    [6] KIM H D,PERRY A T,ANSELL P J.A review of distributed electric propulsion concepts for air vehicle technology[R].Cincinnati,Ohio:AIAA/IEEE Electric Aircraft Technologies Symposium,2018.
    [7] 邓磊,乔志德,杨旭东,等 高升阻比自然层流翼型多点/多目标优化设计[J].空气动力学学报,2011,29(3):76-81. DENG Lei,QIAO Zhide,YANG Xudong,et al.Multi-point/objective optimization design of high lift-to-drag ratio for NLF airfoils[J].Acta Aerodynamic Sinica,2011,29(3):76-81.(in Chinese)
    [8] 张维智,贺德馨,张兆顺.低雷诺数高升力翼型的设计和实验研究[J].空气动力学学报,1998,16(3):98-102. ZHANG Weizhi,HE Dexin,ZHANG Zhaoshun.The design and experiment study for a high airfoil at low reynold numbers[J].Acta Aerodynamic Sinica,1998,16(3):98-102.(in Chinese)
    [9] DRELA M.Low-Reynolds-number airfoil design for the M.I.T.Daedalus prototype:a case study[J].Journal of Aircraft,1988,25(8):724-732.
    [10] SELIG M S,GUGLIELMO J J.High-lift low reynolds number airfoil design[J].Journal of Aircraft,1997,34(1):72-79.
    [11] 甘文彪,周洲,许晓平.仿生全翼式太阳能无人机分层协同设计及分析[J].航空学报,2015,36(1):163-178. GAN Wenbiao,ZHOU Zhou,XU Xiaoping.Multilevel collaboration design and analysis of bionic full-wing typical solar-powered unmanned aerial vehicle[J].Acta Aeronautica et Astronautica Sinica,2015,36(1):163-178.(in Chinese)
    [12] 甘文彪,周洲,许晓平.仿生全翼式太阳能无人机气动数值模拟[J].航空学报,2015,36(10):3284-3294. GAN Wenbiao,ZHOU Zhou,XU Xiaoping.Aerodynamic numerical simulation of bionic full-wing typical solar-powered unmanned aerial vehicle[J].Acta Aeronautica et Astronautica Sinica,2015,36(10):3284-3294.(in Chinese)
    [13] ALBA C,ELHAM A,GERMAN B J,et al.A surrogate-based multi-disciplinary design optimization framework modeling wing-propeller interaction[J].Aerospace Science and Technology,2018,78:721-733.
    [14] VELDHUIS L L M,HEYMA P M.Aerodynamic optimisation of wings in multi-engined tractor propeller arrangements[J].Aircraft Design,2000,3(3):129-149.
    [15] VELDHUIS L L M.Optimization of tractor propeller/wing configurations[J].Journal of Aerospace Engineering,1995,209(3):215-226.
    [16] VELDHUIS L L M.Review of propeller-wing aerodynamic interference[R].Yokohama,Japan:the 24th International Congress of the Aeronautical Sciences,2004.
    [17] RAKSHITH B R,DESHPANDE S M,NARASIMHA R,et al.Optimal low-drag wing planforms for tractor-configuration propeller-driven aircraft[J].Journal of Aircraft,2015,52(6):1791-1801.
    [18] 王科雷,周洲,祝小平.耦合多螺旋桨滑流影响的低雷诺数机翼设计[J].航空学报,2017,38(6):1-13. WANG Kelei,ZHOU Zhou,ZHU Xiaoping.Aerodunamic design of low-Reynolds-number wing taking into account the multiple propellers induced effects[J].Acta Aeronautica et Astronautica Sinica,2017,38(6):1-13.(in Chinese)
    [19] 徐家宽,白俊强,黄江涛,等.考虑螺旋桨滑流影响的机翼气动优化设计[J].航空学报,2014,35(11):2910-2920. XU Jiakuan,BAI Junqiang,HUANG Jiangtao,et al.Aerodunamic optimization design of wing under the interaction of propeller slipstream[J].Acta Aeronautica et Astronautica Sinica,2014,35(11):2910-2920.(in Chinese)
    [20] SCHNULO S L,CHIN J C,FALCK R D,et al.Development of a Multi-phase mission planning tool for NASA X-57 Maxwell[C]∥Proceedings of AIAA Aviation Forum.Atlanta,GA:AIAA,2018:1-14.
    [21] LARRABEE E E.Practical design of minimum induced loss propellers[R].Warrendale,PA:SAE International Business Aircraft Meeting and Exposition,1979.
    [22] HEPPERLE M.Inverse aerodynamic design procedure for propellers having a prescribed chord-length distribution[J].Journal of Aircraft,2010,47(6):1867-1872.
    [23] 范中允,周洲,祝小平.一种可任意给定环量分布的螺旋桨设计方法[J].航空动力学报,2019,34(2):434-441. FAN Zhongyun,ZHOU Zhou,ZHU Xiaoping.A design method for propeller with arbitrary circulation distribution[J].Journal of Aerospace Power,2019,34(2):434-441.(in Chinese)
    [24] XIANG S,LIU Y Q,TONG G,et al.An improved propeller design method for the electric aircraft[J].Aerospace Science and Technology,2018,78:488-493.
    [25] 范中允,周洲,祝小平,等.高鲁棒性的螺旋桨片条理论非线性修正方法[J].航空学报,2018,39(8):32-45. FAN Zhongyun,ZHOU Zhou,ZHU Xiaoping,et al.High-robustness nonlinear-modification for propeller BEMT[J].Acta Aeronautica et Astronautica Sinica,2018,39(8):32-45.(in Chinese)
    [26] 刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社,2006.
    [27] RWIGEMA M K.Propeller blade element momentum theory with vortex wake deflection[R].Nice,France:the 27th International Congress of the Aeronautical Sciences,2010.
    [28] VELDHUIS L L M.Propeller wing aerodynamic interference[D].Delft,Netherlands:Technische Universiteit Delft,2005.
    [29] JOSEPH K,ALLEN P.Low-speed aerodynamics[M].New York:Cambridge University Press,2009.
    [30] 韩忠华.Kriging模型及代理优化算法研究进展[J].航空学报,2016,37(11):3197-3225. HAN Zhonghua.Kriging surrogate model and its application to design optimization:a review of recent progress[J].Acta Aeronautica et Astronautica Sinica,2016,37(11):3197-3225.(in Chinese)
    [31] BATRAKOV A S,KUSYUMOV A N,MIKHAILOV S A,et al.Aerodynamic optimization of helicopter rear fuselage[J].Aerospace Science and Technology,2018,77:704-712.
    [32] YU J,WANG Z,CHEN F,et al.Kriging surrogate model applied in the mechanism study of tip leakage flow control in turbine cascade by multiple DBD plasma actuators[J].Aerospace Science and Technology,2019,85:216-228.
    [33] 王科雷,周洲,祝小平,等 低雷诺数多螺旋桨/机翼耦合气动设计[J].航空学报,2018,39(8):71-87. WANG Kelei,ZHOU Zhou,ZHU Xiaoping.Multi-propeller/wing coupled aerodynamic design at low Reynolds number[J].Acta Aeronautica et Astronautica Sinica,2018,39(8):71-87.(in Chinese)
    [34] EPEMA H K.Wing optimisation for tractor propeller configurations[D].Delft,Netherlands:Technische Universiteit Delft,2017.
    [35] JEONG S,MURAYAMA M,YAMAMOTO K.Efficient optimization design method using Kriging model[J].Journal of Aircraft,2005,42(2):413-420.
    [36] ANDERSON J D.Fundamentals of aerodynamics design[M].5th ed.New York:McGraw-Hill,2011.
  • 加载中
计量
  • 文章访问数:  107
  • HTML浏览量:  6
  • PDF量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-07
  • 刊出日期:  2021-01-28

目录

    /

    返回文章
    返回