留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光冲击强化提高外物打伤钛合金模拟叶片高周疲劳性能

聂祥樊 魏晨 侯志伟 汤毓源 何卫锋

聂祥樊, 魏晨, 侯志伟, 汤毓源, 何卫锋. 激光冲击强化提高外物打伤钛合金模拟叶片高周疲劳性能[J]. 航空动力学报, 2021, 36(1): 137-147. doi: 10.13224/j.cnki.jasp.2021.01.016
引用本文: 聂祥樊, 魏晨, 侯志伟, 汤毓源, 何卫锋. 激光冲击强化提高外物打伤钛合金模拟叶片高周疲劳性能[J]. 航空动力学报, 2021, 36(1): 137-147. doi: 10.13224/j.cnki.jasp.2021.01.016
NIE Xiangfan, WEI Chen, HOU Zhiwei, TANG Yuyuan, HE Weifeng. Improving fatigue performance of titanium alloy simulated-blade subjected to foreign object damage by laser shock peening[J]. Journal of Aerospace Power, 2021, 36(1): 137-147. doi: 10.13224/j.cnki.jasp.2021.01.016
Citation: NIE Xiangfan, WEI Chen, HOU Zhiwei, TANG Yuyuan, HE Weifeng. Improving fatigue performance of titanium alloy simulated-blade subjected to foreign object damage by laser shock peening[J]. Journal of Aerospace Power, 2021, 36(1): 137-147. doi: 10.13224/j.cnki.jasp.2021.01.016

激光冲击强化提高外物打伤钛合金模拟叶片高周疲劳性能

doi: 10.13224/j.cnki.jasp.2021.01.016
基金项目: 博士后创新人才支持计划项目(BX201700077); 博士后面上项目(191785); 陕西省自然科学基金(2018JQ5125)

Improving fatigue performance of titanium alloy simulated-blade subjected to foreign object damage by laser shock peening

  • 摘要: 为指导钛合金叶片抗外物打伤激光冲击强化工艺设计,根据真实叶片叶型特征设计了刃口型模拟叶片,采用两种激光冲击强化工艺对模拟叶片进行预处理,并采用空气炮系统进行外物打伤模拟试验,最后通过疲劳试验和应力场预测进行疲劳性能影响规律及机理分析。试验结果表明:模拟叶片外物打伤后疲劳强度由51845 MPa降为29072 MPa,而激光能量为5 J和7 J强化工艺下疲劳强度分别提升至34449、37493 MPa。激光冲击引入高数值残余压应力场,大大改善了外物打伤区域的局部应力场分布,在显著提高外物打伤模拟叶片疲劳强度的同时,可承受更大的应力集中,也增大了疲劳缺口系数偏差。两种强化工艺中激光能量越大,产生的残余压应力场数值和深度越大,更加有效地降低裂纹扩展过程中的等效应力强度因子幅值,外物打伤模拟叶片疲劳强度和疲劳缺口系数偏差提高程度越大。

     

  • [1] WITEK L.Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue[J].Engineering Failure Analysis,2011,18(4):1223-1232.
    [2] 李应红.激光冲击强化理论与技术[M].北京:科学出版社,2013:274-275.
    [3] COWLES B,MORRIS B,NAIK R,et al.Applications,benefits,and challenges of advanced surface treatments surface treatments-an industry perspective[R].Houston,Texas,US:the First International Conference on Laser Peening,2008.
    [4] BARTSCH T M.High cycle fatigue (HCF) science and technology program 2002 annual report[R].Tampa,US:Universal Technology Corporation,2003.
    [5] LIN B,LUPTON C,SPANRAD S,et al.Fatigue crack growth in laser-shock-peened Ti-6Al-4V aerofoil specimens due to foreign object damage[J].International Journal of Fatigue,2014,59:23-33.
    [6] ZABEEN S,PREUSS M,WITHERS P J.Evolution of a laser shock peened residual stress field locally with foreign object damage and subsquent fatigue crack growth[J].Acta Materialia,2015,83:216-226.
    [7] 李东霖,何卫锋,游熙,等.激光冲击强化提高外物打伤TC4钛合金疲劳强度的试验研究[J].中国激光,2016,43(7):122-130. LI Donglin,HE Weifeng,YOU Xi,et al.Experimental research on improving fatigue strength of wounded TC4 titanium alloy by laser shock peening[J].Chinese Journal of Lasers,2016,43(7):122-130.(in Chinese)
    [8] 吴俊峰,邹世坤,张永康,等.激光冲击强化TC17叶片前缘模拟件的抗FOD性能[J].稀有金属材料与工程,2018,47(11):113-118. WU Junfeng,ZOU Shikun,ZHANG Yongkang,et al.FOD resistance of the simulator samples of TC17 blades leading edges with laser shock processing[J].Rare Metal Materials and Engineering,2018,47(11):113-118.(in Chinese)
    [9] ARIF A F M.Numerical prediction of plastic deformation and residual stresses induced by laser shock processing[J].Journal of Materials Processing Technology,2003,136:117-182.
    [10] CHEN X,HUTCHINSON J W.Foreign object damage and fatigue crack threshold:cracking outside shallow indents[J].International Journal of Fracture,2001,107(1):31-51.
    [11] MAXWELL D C,NICHOLAS T A.Rapid method for generation of a Haigh diagram for high cycle fatigue[J].Fatigue and Fracture Mechanics,1999,29(1):626-641.
    [12] 《中国航空材料手册》编辑委员会.中国航空材料手册:钛合金铜合金[M].第2版.北京:中国标准出版社,2002:15-59.
    [13] 黄伟,陈伟,潘辉,等.外物损伤对钛合金TC4高周疲劳强度的影响研究[J].机械强度,2014,36(3):357-362. HUANG Wei,CHEN Wei,PAN Hui,et al.Effect of foreign object damage upon the high cycle fatigue strength of TC4[J].Journal of Mechanical Strength,2014,36(3):357-362.(in Chinese)
    [14] 许祥胜,赵振华,陈伟.外物损伤对TC4钛合金的高周疲劳强度的影响[J].航空发动机,2017,43(3):88-92. XU Xiangsheng,ZHAO Zhenhua,CHEN Wei.The influences of foreign object damage on the high cycle fatigue behavior of titanium alloy TC4[J].Aeroengine,2017,43(3):88-92.(in Chinese)
    [15] NICHOLAS T,THOMPSON S R,WILLIAM J,et al.Comparison of fatigue limit strength of Ti-6Al-4V intension and torsion after real and simulated foreign object damage[J].International Journal of Fatigue,2005,27(10):1637-1643.
    [16] NEUBER H.Theory of notch stresses-principle for exact stress calculation[M].Ann Arbor,US:Edwards Brothers Incorporation,1946:54-71.
    [17] LANNING D B,NICHOLAS T,HARITOS G K,et al.On the use of critical distance theories for the prediction of the high cycle fatigue limit in notched Ti-6Al-4V[J].International Journal of Fatigue,2005,27(1):45-47.
    [18] 熊再银,秦胜欢,李柳,等.Q235钢缺口试样拉压低循环疲劳的实验研究[J].固体力学学报,2015,36(5):410-420. XIONG Zaiyin,QIN Shenghuan,LI Liu,et al.Experimental investigation on tension-compression low cycle fatigue of Q235 steel notched specimens[J].Chinese Journal of Solid Mechanics,2015,36(5):410-420.(in Chinese)
    [19] MARANDI S M,RAHMANI K,TAJDARI M.Foreign object damage on the leading edge of gas turbine blades[J].Aerospace Science and Technology,2014,33(1):65-75.
    [20] 裴亚田.激光冲击双相钛合金TC17强化机理及延寿机理研究[D].北京:北京化工大学,2017.
    [21] 陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002:97-99.
  • 加载中
计量
  • 文章访问数:  146
  • HTML浏览量:  3
  • PDF量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-09
  • 刊出日期:  2021-01-28

目录

    /

    返回文章
    返回