留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亥姆霍兹共振器对热声不稳定极限环的预测

余志健 杨旸

余志健, 杨旸. 亥姆霍兹共振器对热声不稳定极限环的预测[J]. 航空动力学报, 2021, 36(5): 997-1006. doi: 10.13224/j.cnki.jasp.2021.05.011
引用本文: 余志健, 杨旸. 亥姆霍兹共振器对热声不稳定极限环的预测[J]. 航空动力学报, 2021, 36(5): 997-1006. doi: 10.13224/j.cnki.jasp.2021.05.011
YU Zhijian, YANG Yang. Prediction of Helmholtz dampers on limit cycle of thermoacoustic instabilities[J]. Journal of Aerospace Power, 2021, 36(5): 997-1006. doi: 10.13224/j.cnki.jasp.2021.05.011
Citation: YU Zhijian, YANG Yang. Prediction of Helmholtz dampers on limit cycle of thermoacoustic instabilities[J]. Journal of Aerospace Power, 2021, 36(5): 997-1006. doi: 10.13224/j.cnki.jasp.2021.05.011

亥姆霍兹共振器对热声不稳定极限环的预测

doi: 10.13224/j.cnki.jasp.2021.05.011
基金项目: 中国科学院率先行动百人计划(B类)(Y9291282U1)

Prediction of Helmholtz dampers on limit cycle of thermoacoustic instabilities

  • 摘要: 验证亥姆霍兹法求解亥姆霍兹共振器对热声极限环影响的可靠性,实验在Rijke管上进行。采用耦合非线性热释放率模型、实测阻尼率及共振器阻抗模型的亥姆霍兹法求解耦合共振器前后热声极限环特性。其中共振器阻抗模型采用阻抗管修正。结果表明:修正的阻抗模型可有效模拟不同背腔流量下共振器反射率幅值和相位。背腔流量增加,共振器阻抗增加。未加共振器,85 V加热电压模拟的极限环频率和速度振幅相对误差为3.4%和7.2%。耦合共振器,低背腔流量,预测的极限环频率和速度振幅相对误差为3.7%和6.2%。背腔流量越大,共振器接口涡脱落增强,减振效果增强,但采用忽略流动的亥姆霍兹法模拟精度降低。共振器安装位置离波腹越近,减振效果越好。

     

  • [1] YING H,YANG V.Dynamics and stability of lean-premixed swirl-stabilized combustion[J].Progress in Energy and Combustion Science,2009,35(4):293-364.
    [2] ZHAO D,LI X Y.A review of acoustic dampers applied to combustion chambers in aerospace industry[J].Progress in Aerospace Sciences,2015,74:114-130.
    [3] 金如山,索建秦.先进燃气轮机燃烧室[M].北京:航空工业出版社,2016.
    [4] BOTHIEN M R,NOIRAY N,SCHUERMANS B.A novel damping device for broadband attenuation of low-frequency combustion pulsations in gas turbines[J].Journal of Engineering for Gas Turbines and Power,2014,136(4):041504.1-041504.9.
    [5] SCHUERMANS B,BOTHIEN M,MAURER M,et al.Combined acoustic damping-cooling system for operational flexibility of GT26/GT24 reheat combustors[R].ASME Paper GT2015-42287,2015.
    [6] YANG Y,NOIRAY N,SCARPATO A,et al.Numerical analysis of the dynamic flame response in Alstom reheat combustion systems[R].ASME Paper GT2015-42622,2015.
    [7] YANG D,LAERA D,MORGANSA S.A systematic study of nonlinear coupling of thermoacoustic modes in annular combustors[J].Journal of Sound and Vibration,2019,456:137-161.
    [8] 杨甫江,郭志辉,付虓.基于热声网络法的燃烧不稳定性分析研究[J].推进技术,2014,35(6):822-829.
    [9] YANG Fujiang,GUO Zhihui,FU Xiao.Analytic study on combustion instability with a thermoacoustic nework model[J].Journal of Propulsion Technology,2014 35(6):822-829.(in Chinese)
    [10] 高原,朱民.亥姆霍兹共振器抑制振荡燃烧理论分析[J].工程热物理学报,2009,30(6):1048-1050.
    [11] GAO Yuan,ZHU Min.Theoretical analysis of combustion oscillation suppression with Helmholtz resonators[J].Journal of Engineer Thermophysics,2009,30(6):1048-1050.(in Chinese)
    [12] WOLF P,STAFFELBACH G,GICQUEL L Y M,et al.Acoustic and large eddy simulation studies of azimuthal modes in annular combustion chambers[J].Combustion and Flame,2012,159(11):3398-3413.
    [13] CAMPA G,CAMPOREALES M.Influence of flame and burner transfer matrix on thermoacoustic combustion instability modes and frequencies[R].ASME Paper GT2010-23104,2010.
    [14] CAMPA G,CAMPOREALE S M.Prediction of the thermoacoustic combustion instabilities in practical annular combustors[J].Journal of Engineering for Gas Turbines and Power,2014,136(9):091504.1-091504.10.
    [15] LAERA D,CAMPA G,CAMPOREALE S M.A finite element method for a weakly nonlinear dynamic analysis and bifurcation tracking of thermo-acoustic instability in longitudinal and annular combustors[J].Applied Energy,2017,187:216-227.
    [16] LAERA D,PRIEUR K,DUROX D,et al.Impact of heat release distribution on the spinning modes of an annular combustor with multiple matrix burners[J].Journal of Engineering for Gas Turbines and Power,2017,139(5):051505.1-051505.10.
    [17] International Standards Organization.Acoustics-Determination sound absorption coefficient and impedance in impedance tubes:Part 2 transfer function method:ISO 10534-2-1998[S].Geneva,Switzerland:International Standards Organization,2001:1-27.
    [18] HAN X,LAERA D,YANG D,et al.Flame interactions in a stratified swirl burner:flame stabilization,combustion instabilities and beating oscillations[J].Combustion and Flame,2020,212:500-509.
    [19] 莫尔斯 P M,英格特 K U.理论声学[M].杨训仁,吕如榆,戴根华译.北京:科学出版社,1984.
    [20] TAM C K W,KURBATSKII K A,AHUJA KK,et al.A numerical and experimental investigation of the dissipation mechanisms of resonant acoustic liners[J].Journal of Sound and Vibration,2001,245(3):545-557.
    [21] HECKL M A.Active control of the noise from a Rijke tube[J].Journal of Sound and Vibration,1988,124(1):117-133.
    [22] BALASUBRAMANIAN K,SUJITHR I.Thermoacoustic instability in a Rijke tube:non-normality and nonlinearity[J].Physics of Fluids,2008,20(4):044103.1-044103.11.
  • 加载中
计量
  • 文章访问数:  127
  • HTML浏览量:  1
  • PDF量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回