留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

进气道激波串振荡的模态分解及快速预测

孙斐 苏纬仪 侯强 王谋远

孙斐, 苏纬仪, 侯强, 王谋远. 进气道激波串振荡的模态分解及快速预测[J]. 航空动力学报, 2021, 36(5): 1040-1051. doi: 10.13224/j.cnki.jasp.2021.05.015
引用本文: 孙斐, 苏纬仪, 侯强, 王谋远. 进气道激波串振荡的模态分解及快速预测[J]. 航空动力学报, 2021, 36(5): 1040-1051. doi: 10.13224/j.cnki.jasp.2021.05.015
SUN Fei, SU Weiyi, HOU Qiang, WANG Mouyuan. Modal decomposition and rapid prediction of shock train oscillation for inlet[J]. Journal of Aerospace Power, 2021, 36(5): 1040-1051. doi: 10.13224/j.cnki.jasp.2021.05.015
Citation: SUN Fei, SU Weiyi, HOU Qiang, WANG Mouyuan. Modal decomposition and rapid prediction of shock train oscillation for inlet[J]. Journal of Aerospace Power, 2021, 36(5): 1040-1051. doi: 10.13224/j.cnki.jasp.2021.05.015

进气道激波串振荡的模态分解及快速预测

doi: 10.13224/j.cnki.jasp.2021.05.015
基金项目: 国家自然科学基金(11572155)

Modal decomposition and rapid prediction of shock train oscillation for inlet

  • 摘要: 为研究隔离段自激振荡现象,采用2阶时间和空间精度、非结构网格、剪切应力输运(SST) k -ω湍流模型有限体积法程序对二元进气道在高反压下的非定常特性进行数值模拟,成功捕捉到激波串自激振荡现象,在此基础上利用本征正交分解(POD)和动力学模态分解(DMD)方法对其进行分析。结果表明:该自激振荡是低频主导、多频耦合的复杂振荡现象;基于本征正交分解和动力学模态分解构建的预测模型均能准确快速地预测出非定常流场的演变特性,预测误差小于0.2%,前者耗时为0.22 s,后者耗时为0.05 s。

     

  • [1] GNANI F,ZARE-BEHTASH H,KONTIS K.Pseudo-shock waves and their interactions in high-speed intakes[J].Progress in Aerospace Sciences,2016,82:36-56.
    [2] HOU W,CHANG J,XIE Z,et al.Behavior and flow mechanism of shock train self-excited oscillation influenced by background waves[J].Acta Astronautica,2020,166:29-40.
    [3] 张海林,周林,高少杰,等.美国X-51A飞行器发展分析[J].飞航导弹,2014(9):35-38.
    [4] IKUI T,MATSUO K,NAGAI M,et al.Oscillation phenomena of pseudo-shock waves[J].Bulletin of the JSME(Japan Society of Mechanical Engineers),1974,17(112):1278-1285.
    [5] SU W Y,ZHANG K Y.Back-pressure effects on the hypersonic inlet-isolator pseudoshock motions[J].Journal of Propulsion and Power,2013,29(6):1391-1399.
    [6] 熊冰,范晓樯,王振国.中心线偏置隔离段内激波串振荡特性[J].航空动力学报,2016,31(7):1669-1675. XIONG Bing,FAN Xiaoqiang,WANG Zhenguo.Oscillation characteristics of shock train in deflected center-line isolator[J].Journal of Aerospace Power,2016,31(7):1669-1675.(in Chinese)
    [7] XIONG B,FAN X Q,WANG Y,et al.Experimental study on self-excited and forced oscillations of an oblique shock train[J].Journal of Spacecraft and Rockets,2018,55(3):640-647.
    [8] YAMANE R,KONDO E,TOMITA Y,et al.Vibration of pseudo-shock in straight duct:1st report fluctuation of static pressure[J].Bulletin of JSME(Japan Society of Mechanical Engineers),1984,27(229):1385-1392.
    [9] YAMANE R,TAKAHASHI M,SAITO H.Vibration of pseudo-shock in straight duct:2nd report correlation of static pressure fluctuation[J].Bulletin of JSME(Japan Society of Mechanical Engineers),1984,27(229):1393-1398.
    [10] SUGIYAMA H,TAKEDA H,ZHANG J,et al.Locations and oscillation phenomena of pseudo-shock waves in a straight rectangular duct[J].JSME(Japan Society of Mechanical Engineers) International Journal,1988,31(1):9-15.
    [11] WALTRUP P J,BILLIG F S.Structure of shocks waves in cylindrical ducts[J].AIAA Journal,1973,11(10):1404-1408.
    [12] 陈云,苏纬仪,王赫,等.变截面管内激波串的预测理论及其验证[J].航空动力学报,2018,33(1):131-136. CHEN Yun,SU Weiyi,WANG He,et al.Prediction theory and validation of shock train in variable section duct[J].Journal of Aerospace Power,2018,33(1):131-136.(in Chinese)
    [13] 寇佳庆,张伟伟.动力学模态分解及其在流体力学中的应用[J].空气动力学报,2018,36(2):163-179. KOU Jiaqing,ZHANG Weiwei.Dynamic mode decomposition and its applications in fluid dynamics[J].Acta Aerodynamica Sinica,2018,36(2):163-179.(in Chinese)
    [14] LU K,JIN Y,CHEN Y,et al.Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems[J].Mechanical Systems and Signal Processing,2019,123:264-297.
    [15] JO T,KOO B,KIN H,et al.Effective sensor placement in a stream reformer using gappy proper orthogonal decomposition[J].Applied Thermal Engineering,2019,154:419-432.
    [16] SIROVICH L,KIRBY M.Low-dimensional procedure for the characterization of human faces[J].Journal of the Optical Society of American:A Optics Image Science and Vision,1987,4(3):519-524.
    [17] 吴亚东,李涛,赖生智.POD和DMD方法分析不同间隙压气机旋转不稳定性特性[J].航空动力学报,2019,34(9):2018-2026. WU Yadong,LI Tao,LAI Shengzhi.Analysis of rotating instability characteristics in compressor with different tipclearances by POD and DMD methods[J].Journal of Aerospace Power,2019,34(9):2018-2026.(in Chinese)
    [18] 傅珏,杨波,钟芳源.基于POD方法的跨声速轴流压气机转子叶顶间隙流场分析[J].航空动力学报,2019,34(9):2048-2055. FU Jue,YANG Bo,ZHONG Fangyuan.Analysis of transonic axial compressor tip clearance flow field with POD method[J].Journal of Aerospace Power,2019,34(9):2048-2055.(in Chinese)
    [19] BAKEWELL H P,LUMLEY J L.Viscous sublayer and adjacent wall region in turbulent pipe flow[J].The Physics of Fluids,1967,10(9):1880-1889.
    [20] MAININI L,WILLCOX K.Surrogate modeling approach to support real-time structural assessment and decision-making[J].AIAA Journal,2015,53(6):1612-1626.
    [21] SIROVICH L.Turbulence and the dynamics of coherent structures:Part Ⅰ coherent structures[J].Quarterly of Applied Mathematics,1987,45(3):561-571.
    [22] SCHMID P J.Dynamic mode decomposition of numerical and experimental data[J].Journal of Fluid Mechanics,2010,656:5-28.
    [23] REINARTZ B.U,HERRMANN C.D,BALLMANN J,et al.Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J].Journal of Propulsion and Power,2003,19(5):868-875.
    [24] IZUMI K,ASO S,NISHIDA M.Experimental and computational studies focusing processes of shock waves reflected from parabolic reflectors[J].Shock Waves,1994,3:213-222.
  • 加载中
计量
  • 文章访问数:  136
  • HTML浏览量:  1
  • PDF量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回