留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑围压效应的N15固体推进剂本构模型

张继业 许进升 韩峰 王士欣

张继业, 许进升, 韩峰, 王士欣. 考虑围压效应的N15固体推进剂本构模型[J]. 航空动力学报, 2021, 36(6): 1335-1344. doi: 10.13224/j.cnki.jasp.2021.06.022
引用本文: 张继业, 许进升, 韩峰, 王士欣. 考虑围压效应的N15固体推进剂本构模型[J]. 航空动力学报, 2021, 36(6): 1335-1344. doi: 10.13224/j.cnki.jasp.2021.06.022
ZHANG Jiye, XU Jinsheng, HAN Feng, WANG Shixin. Constitutive model of N15 solid propellant considering confining pressure effect[J]. Journal of Aerospace Power, 2021, 36(6): 1335-1344. doi: 10.13224/j.cnki.jasp.2021.06.022
Citation: ZHANG Jiye, XU Jinsheng, HAN Feng, WANG Shixin. Constitutive model of N15 solid propellant considering confining pressure effect[J]. Journal of Aerospace Power, 2021, 36(6): 1335-1344. doi: 10.13224/j.cnki.jasp.2021.06.022

考虑围压效应的N15固体推进剂本构模型

doi: 10.13224/j.cnki.jasp.2021.06.022
基金项目: 装备预先研究项目(30107120)

Constitutive model of N15 solid propellant considering confining pressure effect

  • 摘要: 利用自制围压试验系统,完成了不同围压下N15固体推进剂的力学性能测试,结果显示:围压对推进剂初始模量影响不大,但最大抗拉强度、断裂强度、最大伸长率和断裂伸长率均随着围压的增大而增大;结合推进剂细观结构及断面分析,初步揭示了围压对推进剂力学性能的影响机理,由于围压的存在,推进剂内部颗粒脱湿度降低,孔洞由于受到压迫,其形成扩展过程延缓,裂纹萌发扩展被抑制,从细观结构上证明了围压对推进剂具有强化效果;根据弹性-黏弹性对应原理建立了考虑围压效应的N15推进剂本构模型,结果表明所建立的本构模型准确度较好,能够准确描述围压对N15推进剂力学性能的影响。

     

  • [1] 许进升.复合推进剂热粘弹性本构模型实验及数值仿真研究[D].南京:南京理工大学,2013. XU Jinsheng.Experimental andnumerical research on thermo-viscoelastic constitutive model of composite propellant[D].Nanjing:Nanjing University of Science and Technology,2013.(in Chinese)
    [2] 龚建良,樊学忠,李宏岩,等.单室双推力发动机装药的瞬态结构完整性分析[J].弹箭与制导学报,2017,36(6):78-82. GONG Jianliang,FAN Xuezhong,LI Hongyan,et al.Transient structural integrity analysis of single chamber dual thrust engine charge[J].Journal of Projectiles,Rockets,Missiles and Guidance,2017,36(6):78-82.(in Chinese)
    [3] 王鸿丽,许进升,刘宗魁,等.复合改性双基推进剂黏弹性-黏塑性-黏损伤本构模型研究[J].兵工学报,2018,39(7):1308-1315. WANG Hongli,XU Jinsheng,LIU Zongkui,et al.Research on the viscoelasticity-viscoplasticity-viscodamage constitutive model of composite modified double base propellant[J].Acta Armamentarii,2018,39(7):1308-1315.(in Chinese)
    [4] PARK S W,SCHAPERY R A.A viscoelastic constitutive model for particulate composites with growing damage[J].International Journal of Solids and Structures,1997,34(8):931-947.
    [5] HA K,SCHAPERY R A.A three-dimensional viscoelastic constitutive model for particulate composites with growing damage and its experimental validation[J].International Journal of Solids and Structures,1998,35(26):3497-3517.
    [6] HINTERHOELAL R M,SCHAPERY R A.FEM implementation of a three-dimensional viscoelastic constitutive model for particulate composites with damage growth[J].Mechanics of Time-Dependent Materials,2004,8(1):65-94.
    [7] XU Jinsheng,CHEN Xiong,WANG Hongli,et al.Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J].International Journal of Solids and Structures,2014,51(18):3209-3217.
    [8] 彭威.复合固体推进剂粘弹损伤本构模型的细观力学研究[D].长沙:国防科技大学,2001. PENG Wei.Mesoscopic mechanics research of viscoelastic damage constitutive model for composite solid propellant[D].Changsha:National University of Defense Technology,2001.(in Chinese)
    [9] 邓凯,阳建红,陈飞,等.HTPB 复合固体推进剂本构方程[J].宇航学报,2010,31(7):1815-1818. DENG Kai,YANG Jianhong,CHEN Fei,et al.Constitutive equation of HTPB composite solid propellant[J].Journal of Astronautics,2010,31(7):1815-1818.(in Chinese)
    [10] SRIDHAR I,FLECK N A.The multiaxial yield behaviour of an aluminium alloy foam[J].Journal of Materials Science,2005,40(15):4005-4008.
    [11] PERONI L,AVALLE M,PERONI M.The mechanical behaviour of aluminium foam structures in different loading conditions[J].International Journal of Impact Engineering,2008,35(7):644-658.
    [12] LIU C T,WICKHAM D,SMITH G.Effects of confining pressure on the crack growth behavior in a filled elastomer subjected to a constant strain rate[R].ADA423471,2004.
    [13] TRAISSAC Y,NINOUS J,NEVIERE R,et al.Mechanical behavior of a solid composite propellant during motor ignition[J].Rubber Chemistry and Technology,1994,68(1):146-157.
    [14] OEZUEPEK S,BECKER E B.Constitutive equations for solid propellants[J].Journal of Engineering Materials and Technology,1997,119(2):125-132.
    [15] TUNC B,OZUPEK S.Constitutive modeling of solid propellants for three dimensional nonlinear finite element analysis[J].Aerospace Science and Technology,2017,69:290-297.
    [16] TUNC B,ZUPEK S.Implementation and validation of a three dimensional damaging finite strain viscoelastic model[J].International Journal of Solids and Structures,2016,102/103:275-285.
    [17] SIMO J C.On a fully three-dimensional finite-strain viscoelastic damage model:formulation and computational aspects[J].Computer Methods in Applied Mechanics and Engineering,1987,60(2):153-173.
    [18] CANGA M E,BECKER E B,SEBNEM .Constitutive modeling of viscoelastic materials with damage-computational aspects[J].Computer Methods in Applied Mechanics and Engineering,2001,190(15/16/17):2207-2226.
    [19] 张建彬.双基推进剂屈服准则及粘弹塑性本构模型研究[D].南京:南京理工大学,2013. ZHANG Jianbin.Study on yield criteria and visco-elastoplastic constitutive model of the double-base propellant[D].Nanjing:Nanjing University of Science and Technology,2013.(in Chinese)
    [20] 申志彬,张亮,职世君.固体推进剂宽温-气体围压试验系统设计与试验[J].固体火箭技术,2019,42(3):340-344. SHEN Zhibin,ZHANG Liang,ZHI Shijun.Wide temperature range-gas ambient pressure test system and experiments for solid propellant[J].Journal of Solid Rocket Technology,2019,42(3):340-344.(in Chinese)
    [21] 刘帅杰,李忠辉,钮月,等.气体围压条件下煤体单轴压缩破坏的电位特征研究[J].煤矿安全,2017,48(6):5-8. LIU Shuaijie,LI Zhonghui,NIU Yue,et al.Study on electric potential characteristics of coal fracture under uniaxial compression and gas confining pressure[J].Safety in Coal Mines,2017,48(6):5-8.(in Chinese)
  • 加载中
计量
  • 文章访问数:  92
  • HTML浏览量:  4
  • PDF量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-18
  • 刊出日期:  2021-06-28

目录

    /

    返回文章
    返回