| Citation: | YANG Ping, SU Yanchen. Faultdiagnosis of rolling bearing based on convolution gated recurrent network[J]. Journal of Aerospace Power, 2019, 34(11): 2432-2439. doi: 10.13224/j.cnki.jasp.2019.11.015 |
| [1] |
MEDOUED A,MORDJAOUI M,SOUFI Y,et al.Induction machine bearing fault diagnosis based on the axial vibration analytic signal[J].International Journal of Hydrogen Energy,2016,41(29):12688-12695.
|
| [2] |
JENA D P,PANIGRAHI S N.Automatic gear and bearing fault localization using vibration and acoustic signals[J].Applied Acoustics,2015,98:20-33.
|
| [3] |
JANSSEN O,SCHULZ R,SLAVKOVIKJ V,et al.Thermal image based fault diagnosis for rotating machinery[J].Infrared Physics and Technology,2015,73:78-87.
|
| [4] |
刘仁德,陶德华,胡申辉,等.油液分析技术在振动筛故障诊断中的应用[J].润滑与密封,2003(2):66-68.LIU Rende,TAO Dehua,HU Shenhui,et al.Application of oil analysis in the failure diagnosis of vibrating sizer[J].Lubrication Engineering,2003(2):66-68.(in Chinese)
|
| [5] |
JIANG Y,ZHU H,LI Z.A new compound faults detection method for rolling bearings based on empirical wavelet transform and chaotic oscillator[J].Chaos Solitons and Fractals,2016,89:8-19.
|
| [6] |
向丹,岑健.基于EMD熵特征融合的滚动轴承故障诊断方法[J].航空动力学报,2015,30(5):1149-1155.XIANG Dan,CEN Jian.Method of roller bearing fault diagnosis based on feature fusion of EMD entropy[J].Journal of Aerospace Power,2015,30(5):1149-1155.(in Chinese)
|
| [7] |
马风雷,陈小帅,周小龙.改进希尔伯特-黄变换的滚动轴承故障诊断[J].机械设计与制造,2018(5):75-78.MA Fenglei,CHEN Xiaoshuai,ZHOU Xiaolong.Rolling bearing fault diagnosis based on improved hilbert-huang transform[J].Machinery Design and Manufacture,2018 (5):75-78.(in Chinese)
|
| [8] |
胥永刚,孟志鹏,陆明.基于双树复小波包变换和SVM的滚动轴承故障诊断方法[J].航空动力学报,2014,29(1):67-73.XU Yougang,MENG Zhipeng,LU Ming.Fault diagnosis method of rolling bearing based on dual-tree complex wavelet packet transform and SVM[J].Journal of Aerospace Power,2014,29(1):67-73.(in Chinese)
|
| [9] |
MURALIDHARAN V,SUGUMARAN V.A comparative study of Nave Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis[J].Applied Soft Computing Journal,2012,12(8):2023-2029.
|
| [10] |
向玲,郭鹏飞,高楠,张力佳.基于IITD和FCM聚类的滚动轴承故障诊断[J].航空动力学报,2018,33(10):2553-2560.XIANG Ling,GUO Pengfei,GAO Nan,et al.Rolling bearing fault diagnosis based on IITD and FCM clustering.[J].Journal of Aerospace Power,2018,33(10):2553-2560.(in Chinese)
|
| [11] |
ZAREI J,TAJEDDINI M A,KARIMI H R.Vibration analysis for bearing fault detection and classification using an intelligent filter[J].Mechatronics,2014,24(2):151-157.
|
| [12] |
HINTON G,OSINDERO S,TEH Y.A fast learning algorithm for deep belief nets[J].Neural omputation,2006,18(7):1527-1554.
|
| [13] |
SUN W J,SHAO S Y,ZHAO R,et al.A sparse auto-encoder-based deep neural network approach for induction motor faults classification[J].Measurement,2016,89:171-178.
|
| [14] |
张西宁,向宙,唐春华.一种深度卷积自编码网络及其在滚动轴承故障诊断中的应用[J].西安交通大学学报,2018,52(7):1-8,59.ZHANG Xining,XIANG Zhou,TANG Chunhua.A deep convolutional auto-encoding network and its application in fault diagnosis[J].Journal of Xi’an Jiaotong University,2018,52(7):1-8,59.(in Chinese)
|
| [15] |
GAN M,WANG C,ZHU C.Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings[J].Mechanical Systems and Signal Processing,2016,72-73:92-104.
|
| [16] |
LONG W,LI X,LIANG G,et al.A new convolutional neural network-based data-driven fault diagnosis method[J].IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998.
|
| [17] |
ZHANG W,LI C,PENG G,et al.A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J].Mechanical Systems and Signal Processing,2017,100:439-453.
|
| [18] |
LI S,LIU G,TANG X,et al.An ensemble deep convolutional neural network model with improved D-S evidence fusion for bearing fault diagnosis[J].Sensors,2017,17(8):1729-1750.
|
| [19] |
佘博,田福庆,梁伟阁.基于深度卷积变分自编码网络的故障诊断方法[J].仪器仪表学报,2018,39(10):27-35.SHE Bo,TIAN Fuqing,LIANG Weige.Fault diagnosis based on a deep convolution variational autoencoder network[J].Chinese Journal of Scientific Instrument,2018,39(10):27-35.(in Chinese)
|
| [20] |
CHO K,VAN B,GULCEHRE C,et al.Learning phrase representations using rnn encoder-decoder for statistical machine translation[C]∥Empirical Methods in Natural Language rocessing.Doha,Qatar:ACL,2014:1724-1734.
|
| [21] |
ZHANG W,PENG G,LI C,et al.A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals:[J].Sensors,2017,17(2):425-446.
|
| [22] |
LAURENS V,HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008,9:2579-2605.
|