半球头体多孔逆向射流的减阻性能
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(11802340)


Drag reduction performance of hemispherical body with porous opposing jets
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用基于shear stress transfer(SST) k -ω双方程湍流模型的数值方法研究了等面积多孔逆向射流对超声速来流条件下半球头体减阻性能的影响。基于等射流面积设计原则,在半球头体驻点附近进行多孔逆向射流喷注,通过改变射流总压比、射流孔数量,分析各变量对减阻性能的影响,并探讨多孔逆向射流间的相互影响。仿真发现:逆向射流能有效减小半球头体受到的阻力,随着总压比的增大,多孔逆向射流回流区增大,射流减阻性能提高;随着射流孔数的增多,射流减阻性能先提高再降低。在研究范围中,双孔逆向射流取得最优的减阻效果,其减阻比高达29%,双孔逆向射流间的相互影响是其取得良好减阻性能的关键。多孔逆向射流展现了取得优良减阻性能的可能性。

    Abstract:

    Drag reduction performance of a hemispherical body with equal area porous opposing jets was numerically studied using the two-equation shear stress transfer (SST) k -ω turbulence model. Based on the presupposition of equal total jet area, the porous opposing jets were applied around the stationary point of the hemispherical body. By changing the total pressure ratio and number of the jets, the effects of each parameter on the drag reduction were analyzed and the interactions of the porous opposing jets were also discussed. The numerical results showed that opposing jet could reduce the drag of the hemispherical body effectively. With the increase of the total pressure ratio of the jets, the recirculation zone was enlarged and thus the drag reduction performance was improved. Moreover, the drag reduction performance was first improved and then dropped as the number of jets increased. In this study, two opposing jets obtained the best drag reduction performance with the highest percentage of the drag coefficient reduction as 29% due to the interaction of two opposing jets. The porous opposing jets demonstrated the possibility of achieving good drag reduction performance.

    参考文献
    相似文献
    引证文献
引用本文

樊伟杰,周进,李世斌.半球头体多孔逆向射流的减阻性能[J].航空动力学报,2020,35(10):2176~2185. FAN Weijie, ZHOU Jin, LI Shibin. Drag reduction performance of hemispherical body with porous opposing jets[J]. Journal Of Aerospace Power,2020,35(10):2176-2185.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-11-04
  • 出版日期:
您是第位访问者
中文版 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司