Volume 32 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
Composite cooling structure on rotating turbine blade[J]. Journal of Aerospace Power, 2017, 32(3): 584-591. doi: 10.13224/j.cnki.jasp.2017.03.009
Citation: Composite cooling structure on rotating turbine blade[J]. Journal of Aerospace Power, 2017, 32(3): 584-591. doi: 10.13224/j.cnki.jasp.2017.03.009

Composite cooling structure on rotating turbine blade

doi: 10.13224/j.cnki.jasp.2017.03.009
  • Received Date: 2015-07-24
  • Publish Date: 2017-03-28
  • Composite cooling performance of a rotating turbine blade cooling structure was investigated through heat transfer simulation with three-dimensional fluid-solid coupling, and the effects of radiation heat transfer and rotational speed on overall cooling effectiveness were discussed. Results showed that a local high-temperature area around the blade hub and hence a large scope of low cooling effectiveness occurred, leading to a nonuniform distribution of overall temperature for blade structure 1. The cooling effectiveness adjacent to the leading edge was improved, lessening the low effectiveness area as a result of more reasonable film flow distribution of blade structure 2. The cooling effectiveness on blade suction side was markedly enhanced through internal serpentine passages and a uniform distribution of integral cooling effectiveness was obtained for blade structure 3. The blade temperature increased with a regional temperature increment over 50K for the surface emissivity of 1, while the effect of radiation heat transfer cant be ignored. The overall cooling effectiveness on pressure side improved with the augmentation of rotational speed, resulting in a highest regional increase percentage of 15.6%, 13.4% and 16.4% for the three structures, respectively. Nevertheless, the cooling effectiveness on suction side produced little change except a reduction at mid-chord region with the increase of rotational speed.

     

  • loading
  • [1]
    Han J C,Wright L M.Enhanced internal cooling of turbine blades and vanes[R].Morgantown:National Energy Technology Laboratory,2007.
    [2]
    Bogard D G,Thole K A.Gas turbine film cooling[J].Journal of Propulsion and Power,2006,22(2):249-270.
    [3]
    Bunker R S.A review of shaped hole turbine film cooling technology[J].Journal of Heat Transfer,2005,127(4):441-453.
    [4]
    Dyson T E,Bogard D G,Piggush J D,et al.Overall effectiveness for a film cooled turbine blade leading edge with varying hole pitch[J].Journal of Turbomachinery,2013,135(3):031011.1-031011.8.
    [5]
    Deng H W,Gu Z P,Zhu J Q,et al.Experiments of impingement heat transfer with film extraction flow on the leading edge of rotating blades[J].International Journal of Heat and Mass Transfer,2012,55(21/22):5425-5435.
    [6]
    Andrei L,Carcasci C,Soghe R D,et al.Heat transfer measurements in a leading edge geometry with racetrack holes and film cooling extraction[J].Journal of Turbomachinery,2013,135(3):031020.1-031020.9.
    [7]
    Horbach T,Schulz A,Bauer H J.Trailing edge film cooling of gas turbine airfoils:external cooling performance of various internal pin fin configurations[J].Journal of Turbomachinery,2011,133(4):041006.1-041006.9.
    [8]
    Martini P,Schulz A,Bauer H J.Film cooling effectiveness and heat transfer on the trailing edge cutback of gas turbine airfoils with various internal cooling designs[J].Journal of Turbomachinery,2006,128(1):196-205.
    [9]
    Barigozzi G,Perdichizzi A,Ravelli S.Pressure side and cutback trailing edge film cooling in a linear nozzle vane cascade at different Mach numbers[J].Journal of Turbomachinery,2012,134(5):051037.1-051037.10.
    [10]
    徐虹艳,张靖周,谭晓茗.涡轮叶片尾缘内冷通道旋流冷却特性[J].航空动力学报,2014,29(1):59-66.XU Hongyan,ZHANG Jingzhou,TAN Xiaoming.Vortex cooling performance in internal cooling channel of turbine blade trailing edge[J].Journal of Aerospace Power,2014,29(1):59-66.(in Chinese)
    [11]
    郭涛,朱惠人,许都纯.带90°肋和双排出流孔通道换热特性的实验[J].航空动力学报,2010,25(10):2249-2254.GUO Tao,ZHU Huiren,XU Duchun.Heat transfer investigation of the channels with 90°rib turbulators and double-row bleed holes[J].Journal of Aerospace Power,2010,25(10):2249-2254.(in Chinese)
    [12]
    李春林,朱惠人,白江涛,等.带肋横流通道中气膜孔位置对气膜冷却特性的影响[J].航空动力学报,2012,27(6):1340-1346.LI Chunlin,ZHU Huiren,BAI Jiangtao,et al.Effect of film cooling hole entrance position on film cooling characters in the cross-flow passage with ribs[J].Journal of Aerospace Power,2012,27(6):1340-1346.(in Chinese)
    [13]
    Cukurel B,Selcan C,Arts T.Film cooling extraction effects on the aero-thermal characteristics of rib roughened cooling channel flow[J].Journal of Turbomachinery,2013,135(2):021016.1-021016.12.
    [14]
    Nakamata C,Mimura F,Mastushita M,et al.Local cooling effectiveness distribution of an integrated impingement and pin fin cooling configuration[R].ASME Paper GT2007-27020,2007.
    [15]
    Funazaki K,BinSalleh H.Extensive studies on internal and external heat transfer characteristics of integrated impingement cooling structure for HP turbines[R].ASME Paper GT2008-50202,2008.
    [16]
    李鑫,毛军逵,王小平,等.双层壳型涡轮叶片中冲击旋流换热增益效果试验[J].推进技术,2010,31(3):325-330.LI Xin,MAO Junkui,WANG Xiaoping,et al.Experiments on heat transfer enhancement with vortex in a double-decker jet/film cooling structure[J].Journal of Propulsion Technology,2010,31(3):325-330.(in Chinese)
    [17]
    Bunker R S.Gas turbine heat transfer:ten remaining hot gas path challenges[J].Journal of Turbomachinery,2007,129(2):193-201.
    [18]
    董平.航空发动机气冷涡轮叶片的气热耦合数值模拟研究[D].哈尔滨:哈尔滨工业大学,2009.DONG Ping.Research on conjugate heat transfer simulation of aero turbine engine air-cooled vane[D].Harbin:Harbin Institute of Technology,2009.(in Chinese)
    [19]
    Mangani L,Cerutti M,Maritano M,et al.Conjugate heat transfer analysis of NASA C3X film cooled vane with an object-oriented CFD code[R].ASME Paper GT2010-23458,2010.
    [20]
    Ni R H,Humber W,Fan G,et al.Conjugate heat transfer analysis of a film-cooled turbine vane[R].ASME Paper GT2011-45920,2011.
    [21]
    王利平.涡轮叶片冷却结构传热性能的数值研究[D].南京:南京航空航天大学,2011.WANG Liping.Numerical investigation on heat transfer of blade with cooling structure[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011.(in Chinese)
    [22]
    朱兴丹,谭晓茗,郭文,等.高压涡轮转子叶片内部气流组织方式研究[J].航空学报,2014,35(12):3273-3282.ZHU Xingdan,TAN Xiaoming,GUO Wen,et al.Investigation of airflow allocation inside high pressure turbine rotor blade[J].Acta Aeronautica et Astronautica Sinica,2014,35(12):3273-3282.(in Chinese)
    [23]
    Turner E R,Wilson M D,Hylton L D,and et al.Analytical and experimental evaluation of surface heat transfer distributions with leading edge showerhead film cooling[R].NASA-CR-174827,1985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (940) PDF downloads(542) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return