Volume 32 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
Aerodynamic performance of configurations of two-dimension inflatable wings under high Reynolds number[J]. Journal of Aerospace Power, 2017, 32(3): 657-665. doi: 10.13224/j.cnki.jasp.2017.03.018
Citation: Aerodynamic performance of configurations of two-dimension inflatable wings under high Reynolds number[J]. Journal of Aerospace Power, 2017, 32(3): 657-665. doi: 10.13224/j.cnki.jasp.2017.03.018

Aerodynamic performance of configurations of two-dimension inflatable wings under high Reynolds number

doi: 10.13224/j.cnki.jasp.2017.03.018
  • Received Date: 2015-07-23
  • Publish Date: 2017-03-28
  • The aerodynamic performance analysis based on the configurations of two-dimension inflatable wings under high Reynolds number was analyzed. Firstly, configuration characteristic of the two-dimension inflatable wing was designed to define an offset parameter describing the degree of approximation between an inflatable wing profile and a standard airfoil, then several models were developed. Furthermore, with the numerical method, aerodynamic performance of the inflatable wing and the sensibility of the offset parameter was studied and compared with the standard airfoil. Numerical result showed that the aerodynamic performance of the inflatable wing had loss to a certain degree under high Reynolds number. Meanwhile, with the flow field characteristic analysis, the reason for the total drag increasing significantly was explained from mechanism that, in those bumpy areas, the pressure distribution changed a lot, so the increase of the local pressure caused significant increase of pressure drag.

     

  • loading
  • [1]
    Cadogan D,Scarborough S,Gleeson D,et al.Recent development and test of inflatable wing[R].AIAA-2006-2139,2006.
    [2]
    Simpson A,Jacob J,Smith S,et al.BIG BLUE Ⅱ: Mars aircraft prototype with inflatable-rigidizable wings[R].AIAA-2005-813,2005.
    [3]
    Reasor D A,LeBeau R P,Smith S W,et al.Flight testing and simulation of a Mars aircraft design using inflatable wings[R].AIAA-2007-0243,2007.
    [4]
    Reasor D A,LeBeau R P.Numerical study of bumpy airfoil control for low Reynolds numbers[R].AIAA-2007-4100,2007.
    [5]
    Smith S W,LeBeau R P,Seigler T M,et al.Testing of compact inflatable wings for small autonomous aircraft[R].AIAA-2008-2216,2008.
    [6]
    LeBeau R P,Gilliam T D,Schloemer A,et al.Numerical comparison of flow over bumpy inflatable airfoils[R].AIAA-2009-1306,2009.
    [7]
    Thamann M.Aerodynamics and control of a deployable wing UAV for autonomous flight.[D].Lexington,US: University of Kentucky,2012.
    [8]
    Hauser T,Johansen T A,LeBeau R P.Computational optimization of a low Reynolds number inflatable airfoil[R].AIAA-2011-3534,2011.
    [9]
    Takahashi D,LeBeau R P.Computational investigation of Reynolds number effects on flow over inflatable airfoils[R].AIAA-2011-337,2011.
    [10]
    Ghobadi K J,LeBeau R P,Hauser T.Computational testing of inflatable airfoils for improved design[R].AIAA-2012-1213,2012.
    [11]
    Ghobadi K J,Pifer E,LeBeau R P,et al.A computational and experimental investigation of flow over an inflatable wing[R].AIAA-2012-2899,2012.
    [12]
    Zhang F,Ghobadi K J,Spencer G,et al.Examination of three-dimensional flow over a chambered inflatable wing[R].AIAA-2014-0556,2014.
    [13]
    Allred R E,Hoyt A E,Harrah L A,et al.Light curing rigidizable inflatable wing[R].AIAA-2004-1809,2004.
    [14]
    王长国,刘远鹏 崔宇佳,等.逆向迭代的点阵式充气机翼三维保形分析[J].哈尔滨工业大学学报,2013,45(9):31-34.WANG Changguo,LIU Yuanpeng,CUI Yujia,et al.Inverse iterative three-dimensional initial shape analysis of inflatable wing.[J].Journal of Harbin Institute of Technology,2013,45(9):31-34.(in Chinese)
    [15]
    吕强,叶正寅,李栋.充气结构机翼的设计和试验研究[J].飞行力学,2007,25(4):77-81.L Qiang,YE Zhengyin,LI Dong.Research on design and test of inflatable wing[J].Flight Dynamics,2007,25(4):77-81.(in Chinese)
    [16]
    王伟,王华,贾清萍.充气机翼承载能力和气动特性分析[J].航空动力学报,2010,25(10):2296-2301.WANG Wei,WANG Hua,JIA Qingping.Analysis on bearing capacity and aerodynamic performance of an inflatable wing[J].Journal of Aerospace Power,2010,25(10):2296-2301.(in Chinese)
    [17]
    Simpson A,Santhanakrishnan A,Jacob J,et al.Flying on air:UAV flight testing with inflatable wing technology[R].AIAA-2004-6570,2004.
    [18]
    Marzocca P,Gürdal Z,Hol J,et al.Design and shape optimization of inflatable wings[R].AIAA-2006-1823,2006.
    [19]
    Eleni D C,Athanasios T I,Dionissios M P.Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil[J].Journal of Mechanical Engineering Research,2012,4(3):100-111.
    [20]
    Noll T E,Brown J M,Perez-Davis M E,et al.Investigation of the Helios prototype aircraft mishap[R].Hampton,US:NASA Report,2004.
    [21]
    Johansen J.Prediction of laminar/turbulent transition in airfoil flows[R].Copenhagen,Denmark: Ris National Laboratory Report,Ris-R-987(EN),1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (777) PDF downloads(416) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return