Volume 32 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
Optimization of anode propellant allocation on xenon ion thruster[J]. Journal of Aerospace Power, 2017, 32(3): 756-761. doi: 10.13224/j.cnki.jasp.2017.03.030
Citation: Optimization of anode propellant allocation on xenon ion thruster[J]. Journal of Aerospace Power, 2017, 32(3): 756-761. doi: 10.13224/j.cnki.jasp.2017.03.030

Optimization of anode propellant allocation on xenon ion thruster

doi: 10.13224/j.cnki.jasp.2017.03.030
  • Received Date: 2016-05-13
  • Publish Date: 2017-03-28
  • Approach of micro-scale similar flow field of inert gas was obtained with two numerical methods. It was verified that the flow characteristics of ion thrusters propellant distributor could be better simulated under first-order velocity slip boundary condition by N-S(Navier-Stokes) method. Based on xenon flow features and discharge characteristics of four-ring-cusp discharge chamber, improvement scheme was proposed for decelerating injection velocity and ameliorating circumferential uniformity of propellant. Dual-stage distributor was utilized and extra amounts of orifices were arranged at 45° on both sides. Calculation results demonstrate that after conducting the improvement scheme, circumferential uniformity of xenon has an amelioration of 37% while the speed of flow has a decrease of 32%. Furthermore, experimental results illustrate that ion production cost has dropped from 183W/A to 167W/A at maximum throttle condition, and performance of discharge chamber has improved.

     

  • loading
  • [1]
    Shastry R,Herman D A,Soulas G C,et al.Status of NASAs evolutionary xeon thruster(NEXT) long-duration test as of 50000h and 900kg throughput[R].IEPC-2013-121,2013.
    [2]
    Oleson S,Gefert L,Benson S,et al.Mission advantages of NEXT:NASAs evolutionary xenon thruster[R].AIAA 2002-3969,2002.
    [3]
    赵以德,吴先明,王亮,等.LIPS-400离子推力器方案设计研究[R].上海:第十届中国电推进技术学术研讨会,2014.
    [4]
    Patterson M J,Foster J E,Haag T.W,et al.NEXT:NASAs evolutionary xenon thruster[R].AIAA 2002-3832,2002.
    [5]
    Elliott F W,Foster J E,Patterson M J.An overview of the high power electric propulsion program[R].AIAA 2004-3453,2004.
    [6]
    Goebel D M,Katz I.Fundamentals of electric propulsion:ion and hall thrusters[M].Hoboken:John Wiley and Sons,2008.
    [7]
    Janes G S,Lowder R S.Anomalous electron diffusion and ion acceleration in a low density plasma[J].Physics of Fluids,1966,9(6):1115-1123.
    [8]
    Reid B M.The influence of neutral flow rate in the operation of hall thrusters[D].Michigan,USA:University of Michigan,2009.
    [9]
    Hayakawa Y,Miyazaki K,Kitamura S.Performance test of a 14 cm xenon ion thruster[R].Nashville,TN:AIAA/SAE/SAME/ASEE 28th Joint Propulsion Conference and Exhibit,1992.
    [10]
    Nakayama Y,Narisawa K.Neutral pressure measurement in an ion thruster discharge chamber[R].IEPC 2013-106,2013.
    [11]
    Beattie J R,Matossian J N,Poeschel R L,et al.Xenon ion propulsion subsystem[J].Journal of Propulsion and Power,1971,5(4):438-444.
    [12]
    Herman D A,Gallimore A D.Comparison of discharge plasma parameters in a 30-cm NSTAR type ion engine with and without beam extraction[R].AIAA-2003-5162,2003.
    [13]
    陈熙.热等离子体传热与流动[M].北京:科学出版社,2009.
    [14]
    Anderson J D.Fundamentals of aerodynamics[M].New York:McGraw,Hill,1984.
    [15]
    Ketsdever A D,Clabough M T,Gimelshein S F,et al.Experimental and numerical determination of micropropulsion device efficiencies at low Reynolds numbers[J].AIAA Journal,2015,43(3):633-641.
    [16]
    Lilly T,Selden N P,Gimelshein S F,et al.Numerical and experimental study of low Reynolds number flow through thin-walled orifice and short circular tube[R].AIAA-2004-2385,2004.
    [17]
    Lilly T,Selden N P,Gimelshein S F,et al.Measurements and computations of mass flow and momentum flux through short tubes in rarefied gases[J].Physics of Fluids,2006,18(9):4173-4180.
    [18]
    王保国.稀薄气体动力学计算[M].北京:北京航空航天大学出版社,2013.
    [19]
    Bird G A.Molecular gas dynamics and the direct simulation of gas flows[M].New York:Oxford University Press,1994.
    [20]
    王保国,李学东,刘淑艳.高温高速稀薄流的DSMC算法与流场传热分析[J].航空动力学报,2010,25(6):1203-1220.WANG Baoguo,LI Xuedong,LIU Shuyan.DSMC algorithm and heat transfer analysis of high temperature and high velocity rarefied gas flow[J].Journal of Aerospace Power,2010,25(6):1203-1220.( in Chinese)
    [21]
    许艳芝,朱惠人,郑杰.克努森数在微尺度相似流动特性研究中的作用[J].航空动力学报,2013,28(8):1752-1758.XU Yanzhi,ZHU Huiren,ZHENG Jie.Effect of Knudsen number on microscale similar flow characteristics[J].Journal of Aerospace Power,2013,28(8):1752-1758.(in Chinese)
    [22]
    Peters R,Wilbur P.Double ion production in mercury thrusters[R].NASA CR-135019,1976.
    [23]
    Khayms V.Advanced propulsion for microsatellites[D].Cambridge,USA:Massachusetts Institute of Technology,2000.
    [24]
    刘畅,汤海滨,张振鹏,等.离子发动机加速栅极腐蚀深度的DFF测量与数值模拟[J].航空动力学报,2008,23(3):574-579.LIU Chang,TANG Haibin,ZHANG Zhenpeng,et al.Numerical simulation and DFF measurement of ion thruster accelerator grid erosion depth[J].Journal of Aerospace Power,2008,23(3):574-579.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (796) PDF downloads(409) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return