Volume 37 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
SUN Shiping, XU Dehui, LIU Daohuang, HU Zheng. Channel layout and shape optimization of active cooling thin-walled structures[J]. Journal of Aerospace Power, 2022, 37(1): 1-10. doi: 10.13224/j.cnki.jasp.20210005
Citation: SUN Shiping, XU Dehui, LIU Daohuang, HU Zheng. Channel layout and shape optimization of active cooling thin-walled structures[J]. Journal of Aerospace Power, 2022, 37(1): 1-10. doi: 10.13224/j.cnki.jasp.20210005

Channel layout and shape optimization of active cooling thin-walled structures

doi: 10.13224/j.cnki.jasp.20210005
  • Received Date: 2021-01-05
  • Publish Date: 2022-01-28
  • The design research of an actively fuel-cooled scramjet combustor based on traditional analysis methods has poor versatility and a long period.The substructure method was adopted to establish the fluid solid heat multi field coupling finite element model of the active cooling channel cell,and the effectiveness of the finite element model was verified by comparing with the experimental results.The influence of the number of channels on the heat transfer performance was analyzed when the structure weight and mass flow rate were constant.The super-elliptic function was used to describe the cross-section shape of the channel,and the Kriging response surface and multi-objective genetic algorithm were combined to optimize the channel shape to minimize the average wall temperature,pressure loss and maximum stress.The results showed that:there was an appropriate number of channels to coordinate the performance indicators;the position of the channel did not affect the pressure loss,but the closer channel to the gas wall indicated the better heat transfer performance; the comprehensive performance of the channel shape close to the rectangle was better.Compared with the initial scheme,the average wall temperature and the maximum temperature were reduced by 4.9% and 7.2%,respectively,while the pressure loss was reduced by 33.6 kPa (33.4%).Therefore,the comprehensive performance of the active cooling thin-walled structure had been improved significantly.

     

  • loading
  • [1]
    肖红雨,高峰,李宁.再生冷却技术在超燃冲压发动机中的应用与发展[J].飞航导弹,2013(8):78-81.
    [2]
    袁鑫,寇志海,赵国昌,等.矩形通道超临界再生冷却技术研究综述[J].飞航导弹,2017(5):18-23,42.
    [3]
    BUCHMANN O A,WALTERS F M.Heat transfer and fluent flow analysis of hydrogen-cooled panels and manifold systems[R].NASA CR-66925,1970.
    [4]
    FLIEDER W G,RICHARD C E,BUCHMANN O A.An analytical study of hydrogen cooled panels for application to hypersonic aircraft[R].NASA CR-1650,1971.
    [5]
    WIETING A R,DECHAUMPHAI P,BEY K S,et al.Application of integrated fluid-thermal-structural analysis methods[J].Thin-Walled Structures,1991,11(1/2):1-23.
    [6]
    罗世彬,吴先宇,罗文彩,等.机身/推进系统一体化高超声速飞行器冷却性能分析[J].弹箭与制导学报,2004,24 (1):56-62.
    [7]
    杨样,张磊,张若凌,等.超燃冲压发动机燃烧室主动冷却设计研究[J].推进技术,2014,35(2):208-212.
    [8]
    PARRIS D K,LANDRUM D B.Effect of tube geometry on regenerative cooling performance[R].AIAA 2005-4301,2005.
    [9]
    SCOTTI S J,MARTIN C J,LUCAS S H.Active cooling design for scramjet engines using optimization methods[R].AIAA 88-2265,1988.
    [10]
    YOUN B,MILLS A F.Cooling panel optimization for the active cooling system of a hypersonic aircraft[J].Journal of Thermophysics and Heat Transfer,1995,9(1):136-143.
    [11]
    牛禄,程惠尔,李明辉.高宽比和粗糙度对再生冷却通道流动的影响[J].上海交通大学报,2002,36(11):1612-1615.
    [12]
    宋宏伟,纪科星,黄晨光,等.主动冷却通道热流固耦合三维数值计算及构型应力分析[C]∥第三届高超声速科技学术会议文集.江苏 无锡:中国力学学会,2010:332-342.
    [13]
    ZHANG Silong,FENG Yu,ZHANG Duo.Parametric numerical analysis of regenerative cooling in hydrogen fueled scramjet engines[J].International Journal of Hydrogen Energy,2016,41(25):10942-10960.
    [14]
    秦昂,张登成,魏扬,等.超燃冲压发动机再生冷却结构的多目标优化设计[J].推进技术,2018,39(6):1331-1339.
    [15]
    蒋劲,张若凌,乐嘉陵,等.燃油冷却面板传热特性试验与计算分析研究[J].实验流体力学,2011,25(1):1-6.
    [16]
    桂业伟,刘磊,代光月,等.高超声速飞行器流-热-固耦合研究现状与软件开发[J].航空学报,2017,38(7):92-110.
    [17]
    中国航空材料手册编辑委员会.中国航空材料手册[M].北京:中国标准出版社,1988.
    [18]
    李中洲,朱惠人,张霞.微小圆管内煤油流动研究[J].航空动力学报,2010,25(8):1728-1732.
    [19]
    吴峰,王秋旺,罗来勤,等.液体火箭发动机推力室冷却通道传热优化计算[J].推进技术,2006,27(3):197-200.
    [20]
    孙士平,胡坚堂,张卫红.基于超椭圆方程和序列响应面法的回转壳开孔形状优化[J].航空学报,2015,36(11):3595-3607.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (301) PDF downloads(255) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return