Volume 37 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
GUO Xiangdong, HU Zhanwei, DING Liang, YI Xian, ZHANG Pingtao. Numerical investigation of thermal and mechanical equilibrium characteristics of ice crystal in large icing wind tunnel[J]. Journal of Aerospace Power, 2022, 37(3): 478-491. doi: 10.13224/j.cnki.jasp.20210157
Citation: GUO Xiangdong, HU Zhanwei, DING Liang, YI Xian, ZHANG Pingtao. Numerical investigation of thermal and mechanical equilibrium characteristics of ice crystal in large icing wind tunnel[J]. Journal of Aerospace Power, 2022, 37(3): 478-491. doi: 10.13224/j.cnki.jasp.20210157

Numerical investigation of thermal and mechanical equilibrium characteristics of ice crystal in large icing wind tunnel

doi: 10.13224/j.cnki.jasp.20210157
  • Received Date: 2021-04-08
  • Publish Date: 2022-03-28
  • In order to understand the thermal and mechanical equilibrium characteristics of ice crystal in large icing wind tunnel,a numerical approach based upon the Eulerian method coupling movement and heat and mass transfer of ice crystal was developed to simulate the process of movement and heat transfer of ice crystal in the typical configuration of China Aerodynamics Research and Development Center icing wind tunnel.The effects of particle shape and bulk density were examined from three aspects of sink and contraction,momentum equilibrium and thermal equilibrium.Results showed that the particle shape and bulk density had no significant effects on the thermal and mechanical equilibrium characteristics of small size ice crystals.Decreased particle sphericity and bulk density could restrain the sink and contraction of large size ice crystals,thereby increasing the ice crystal cloud size at the exit of configuration.The decrease in particle sphericity and bulk density could increase the particle modified drag coefficient and modified Nusselt number,and then enhance particle momentum and thermal followability,thereby facilitating large size ice particles approaching the momentum equilibrium and thermal equilibrium states at the exit.Under typical computational conditions with large size ice crystal,the velocity and temperature differences of spherical particle at the exit of configuration were about 21 m/s and 8.6 ℃,while those of plate-shaped particle with low bulk density reduced to about 1 m/s and 5.8 ℃,respectively.

     

  • loading
  • [1]
    MASON J G,STRAPP L W,CHOW P.The ice particle threat to engines in flight[R].AIAA-2006-206,2006.
    [2]
    Federal Aviation Administration.Airplane and engine certification requirements in supercooled large drop,phase mixed,and ice crystal icing conditions[R].FAA-2010-0636,2014.
    [3]
    郭向东,张平涛,赵照,等.大型结冰风洞云雾场适航应用符合性验证[J].航空学报,2020,41(10):123879.1-123879.15.
    [4]
    AL-KHALIL K,IRANI E,MILLER D.Mixed-phase icing simulation and testing at the cox icing wind tunnel[R].AIAA-2003-0903,2003.
    [5]
    BAUMERT A,BANSMER S,BACHER M.Implementation of an innovative ice crystal generation system to the icing wind tunnel braunschweig[R].AIAA-2015-1225,2015.
    [6]
    BAUMERT A,BANSMER S,TRONTIN P,et al.Experimental and numerical investigations on aircraft icing at mixed phase conditions[J].International Journal of Heat and Mass Transfer,2018,123:957-978.
    [7]
    KOTT B C,STRUK P M,BARTKUS T P.A study of ice-crystal icing erosion using the NASA icing research tunnel and propulsion systems laboratory[R].AIAA-2020-2842,2020.
    [8]
    郭向东,柳庆林,刘森云,等.结冰风洞中过冷大水滴云雾演化特性数值研究[J].航空学报,2020,41(8):123655.1-123655.18.
    [9]
    PRUPPACHER H R,KLETT J D.Microphysics of clouds and precipitation[M].New York:Kluwer Academic Publishers,2004.
    [10]
    BARTKUS T P,TSAO J C,STRUK P,et al.Numerical analysis of mixed-phase icing cloud simulations in the NASA Propulsion Systems Laboratory[R].AIAA-2017-2537,2017.
    [11]
    BARTKUS T P,STRUK P M,TSAO J C,et al.Comparisons of mixed-phase icing cloud simulations with experiments conducted at the NASA Propulsion Systems Laboratory[R].AIAA-2017-4243,2017.
    [12]
    BARTKUS T P,STRUK P M.Comparisons of CFD simulations of icing wind tunnel clouds with experiments conducted at the NASA Propulsion Systems Laboratory[R].AIAA-2020-2832,2020.
    [13]
    CURRIE T,FULEKI D,DAVISON C.Simulation of ice particle melting in the NRCC RATFac mixed-phase icing tunnel[R].SAE Technical Paper 2015-01-2107,2015.
    [14]
    BAUMERT A,BANSMER S,SATTLER S,et al.Simulating natural ice crystal cloud conditions for icing wind tunnel experiments:a review on the design,commissioning and calibration of the TU Braunschweig ice crystal generation system[R].AIAA-2016-4053,2016.
    [15]
    IULIANO E,MONTREUIL E,NORDE E,et al.Modelling of non-spherical particle evolution for ice crystals simulation with an Eulerian approach[R].SAE Technical Paper 2015-01-2138,2015.
    [16]
    VILLEDIEU P,TRONTIN P,CHAUVIN R.Glaciated and mixed-phase ice accretion modeling using ONERA 2D icing suite[R].AIAA-2014-2199,2014.
    [17]
    TRONTIN P,BLANCHARD G,VILLEDIEU P.A comprehensive numerical model for mixed-phase and glaciated icing conditions[R].AIAA-2016-3742,2016.
    [18]
    NORDE E,AVAN DER WEIDE E T,HOEIJMAKERS H W M.Eulerian method for ice crystal icing[J].AIAA Journal,2018,56(1):222-234.
    [19]
    袁庆浩,樊江,白广忱.航空发动机内部冰晶结冰研究综述[J].推进技术,2018,39(12):2641-2650.
    [20]
    沈浩,韩冰冰,张丽芬.航空发动机中冰晶冰的研究进展[J].实验流体力学,2020,34(6):1-7.
    [21]
    姜飞飞,董威,郑梅,等.冰晶在涡扇发动机内相变换热特性[J].航空动力学报,2019,34(3):567-575.
    [22]
    卜雪琴,李皓,黄平,等.二维机翼混合相结冰数值模拟[J].航空学报,2020,41(12):124085.1-124085.11.
    [23]
    郭向东,王梓旭,李明,等.结冰风洞中液滴过冷特性数值研究[J].航空学报,2018,39(1):121254.1-121254.9.
    [24]
    郭向东,王梓旭,李明,等.结冰风洞中液滴相变效应数值研究[J].航空学报,2018,39(1):21586.1-21586.13.
    [25]
    NORDE E.Eulerian method for ice crystal icing in turbofan engines[D].Enschede,The Netherlands:University of Twente,2017.
    [26]
    STRAPP J W,KOROLEV A,RATVASKY T,et al.The high ice water content study of deep convective clouds:report on science and technical plan[R].Federal Aviation Administration William Hughes Technical Center,DOT/FAA/TC-14/31,2016.
    [27]
    DEZITTER F,GRANDIN A,BRENGUIER J L,et al.HAIC (high altitude ice crystals)[R].AIAA-2013-2674,2013.
    [28]
    LEROY D,FONTAINE E,SCHWARZENBOECK A,et al.Ice crystal sizes in high ice water content clouds:Part Ⅰ on the computation of median mass diameter from in situ measurements[J].Journal of Atmospheric and Oceanic Technology,2016,33(11):2461-2476.
    [29]
    LEROY D,FONTAINE E,SCHWARZENBOECK A,et al.Ice crystal sizes in high ice water content clouds:Part Ⅱ statistics of mass diameter percentiles in tropical convection observed during the HAIC/HIWC project[J].Journal of Atmospheric and Oceanic Technology,2017,34(11):117-135.
    [30]
    GANSER G H.A rational approach to drag prediction of spherical and non-spherical particles[J].Powder Technology,1993,77(2):143-152.
    [31]
    HINDMARSH J P,RUSSEL A B,CHEN X D.Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet[J].International Journal of Heat and Mass Transfer,2003,46(7):1199-1213.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (122) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return