Volume 38 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
ZHENG Qiangang, JIN Chongwen, XIANG Dewei. Performance seeking control of aero-engine based on nonlinear model prediction[J]. Journal of Aerospace Power, 2023, 38(6):1525-1536 doi: 10.13224/j.cnki.jasp.20210290
Citation: ZHENG Qiangang, JIN Chongwen, XIANG Dewei. Performance seeking control of aero-engine based on nonlinear model prediction[J]. Journal of Aerospace Power, 2023, 38(6):1525-1536 doi: 10.13224/j.cnki.jasp.20210290

Performance seeking control of aero-engine based on nonlinear model prediction

doi: 10.13224/j.cnki.jasp.20210290
  • Received Date: 2021-06-08
    Available Online: 2023-04-13
  • To improve the response speed of aero-engine performance seeking control, an aero-engine performance seeking control method based on nonlinear model prediction control was proposed. The full envelope interpolation compact propulsion system dynamic model was used as the on-board model to estimate the engine performance parameters and the future outputs of the limited time domain. With the nonlinear model prediction control method, three typical performance seeking control modes, i.e.: the maximum thrust mode, the minimum fuel consumption mode and the minimum turbine temperature mode were changed into real-time performance seeking, and corresponding real-time control performance indexes were designed to improve engine response speed. The simulation results showed that compared with the traditional method, the proposed control method had better control effect under three performance optimization control modes, and the response speed increased from 0.5 s to 5 s. At the high altitude cruising working point the thrust of the maximum thrust mode increased by 19.8%; the fuel consumption rate of the minimum fuel consumption mode dropped by 3.12%; the temperature of the minimum turbine temperature mode dropped by 17 K, helping to verify the effectiveness of the control method.

     

  • loading
  • [1]
    STEWART J. Integrated flight propulsion control research results using the NASA F-15 HIDEC flight research facility[R]. AIAA-1992-4106, 1992.
    [2]
    WURTH S, MAHONE T, HART J, et al. X-35B integrated flight propulsion control fault tolerance development[R]. AIAA-2002-6019, 2002.
    [3]
    ORME J S, NOBBS S G. Maximum thrust mode evaluation[R]. N95-33017, 1995.
    [4]
    ORME J S, NOBBS S G. Minimum fuel mode evaluation[R]. N95-33015, 1995.
    [5]
    ORME J S, NOBBS S G. Minimum fan turbine inlet temperature mode evaluation[R]. N95-33016, 1995.
    [6]
    GUO T H, LITT J. Resilient propulsion control research for the NASA integrated resilient aircraft control (IRAC) project[R]. AIAA-2007-2802, 2007.
    [7]
    GUO T H, LITT J. Risk management for intelligent fast engine response control[R]. AIAA-2009-1873, 2009.
    [8]
    CSANK J, CHIN J, MAY R, et al. Implementation of enhanced propulsion control modes for emergency flight operation[R]. AIAA-2011-1590, 2011.
    [9]
    GILYARD G, ORME J. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane[R]. AIAA-92-3743, 1992.
    [10]
    ORME J, GILYARD G. Subsonic flight test evaluation of a propulsion system parameter estimation process for the F100 engine[R]. AIAA-92-3745, 1992.
    [11]
    ORME J, GILYARD G. Preliminary supersonic flight test evaluation of performance seeking control[R]. AIAA-93-1821, 1993.
    [12]
    ORME J, CONNERS T. Supersonic flight test results of a performance seeking control algorithm on a NASA F-15 spacecraft[R]. AIAA-94-3210, 1994.
    [13]
    袁春飞,孙健国,熊智,等. 飞/推综合控制模式亚声速半物理仿真试验[J]. 推进技术,2003,24(4): 353-356. doi: 10.3321/j.issn:1001-4055.2003.04.018

    YUAN Chunfei,SUN Jianguo,XIONG Zhi,et al. Subsonic semi-physical simulation test of integrated flight/propulsion control mode[J]. Journal of Propulsion Technology,2003,24(4): 353-356. (in Chinese) doi: 10.3321/j.issn:1001-4055.2003.04.018
    [14]
    朱之丽,王晓波. 高推重比涡扇发动机性能寻优分析研究[J]. 航空动力学报,1999,14(3): 260-264. doi: 10.3969/j.issn.1000-8055.1999.03.008

    ZHU Zhili,WANG Xiaobo. Analysis and research on performance optimization of high thrust-to-weight ratio turbofan engine[J]. Journal of Aerospace Power,1999,14(3): 260-264. (in Chinese) doi: 10.3969/j.issn.1000-8055.1999.03.008
    [15]
    何黎明,樊丁. 利用 SQP 控制涡扇发动机加速过程的多目标最优化研究[J]. 航空动力学报,2001,16(2): 179-181. doi: 10.3969/j.issn.1000-8055.2001.02.018

    HE Liming,FAN Ding. Multi-objective optimization research of turbofan engine acceleration process controlled by SQP[J]. Journal of Aerospace Power,2001,16(2): 179-181. (in Chinese) doi: 10.3969/j.issn.1000-8055.2001.02.018
    [16]
    孙丰诚,孙健国. 基于序列二次规划算法的发动机性能寻优控制[J]. 航空动力学报,2005,20(5): 862-867. doi: 10.13224/j.cnki.jasp.2005.05.029

    SUN Fengcheng,SUN Jianguo. Optimization control of engine performance based on sequential quadratic programming algorithm[J]. Journal of Aerospace Power,2005,20(5): 862-867. (in Chinese) doi: 10.13224/j.cnki.jasp.2005.05.029
    [17]
    朱玉斌,樊思齐,李华聪,等. 航空发动机性能寻优控制混合优化算法[J]. 航空动力学报,2006,21(2): 421-426. doi: 10.3969/j.issn.1000-8055.2006.02.033

    ZHU Yubin,FAN Siqi,LI Huacong,et al. Hybrid optimization algorithm for aeroengine performance optimization control[J]. Journal of Aerospace Power,2006,21(2): 421-426. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.02.033
    [18]
    任新宇,杨育武,樊思齐. 推进系统综合性能寻优控制研究[J]. 推进技术,2010,31(1): 61-64, 81. doi: 10.13675/j.cnki.tjjs.2010.01.005

    REN Xinyu,YANG Yuwu,FAN Siqi. Research on optimization control of propulsion system[J]. Journal of Propulsion Technology,2010,31(1): 61-64, 81. (in Chinese) doi: 10.13675/j.cnki.tjjs.2010.01.005
    [19]
    王健康,张海波,孙健国,等. 基于复合模型及FSQP算法的发动机性能寻优控制试验[J]. 推进技术,2012,33(4): 579-590. doi: 10.13675/j.cnki.tjjs.2012.04.007

    WANG Jiankang,ZHANG Haibo,SUN Jianguo,et al. Engine performance optimization control test based on compound model and FSQP algorithm[J]. Journal of Propulsion Technology,2012,33(4): 579-590. (in Chinese) doi: 10.13675/j.cnki.tjjs.2012.04.007
    [20]
    孙丰勇,张海波,叶志锋,等. 航空发动机超声速巡航性能寻优控制研究[J]. 推进技术,2015,36(8): 1248-1256. doi: 10.13675/j.cnki.tjjs.2015.08.019

    SUN Fengyong,ZHANG Haibo,YE Zhifeng,et al. Research on supersonic cruise performance optimization control of aeroengine[J]. Journal of Propulsion Technology,2015,36(8): 1248-1256. (in Chinese) doi: 10.13675/j.cnki.tjjs.2015.08.019
    [21]
    王元,李秋红,黄向华. 基于DMOM算法的航空发动机性能寻优控制[J]. 航空动力学报,2016,31(4): 948-954. doi: 10.13224/j.cnki.jasp.2016.04.023

    WANG Yuan,LI Qiuhong,HUANG Xianghua. Aeroengine performance optimization control based on DMOM algorithm[J]. Journal of Aerospace Power,2016,31(4): 948-954. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.04.023
    [22]
    杨旦旦. 基于Fibonacci搜索方法的航空发动机性能寻优[J]. 航空动力学报,2016,31(6): 1441-1449. doi: 10.13224/j.cnki.jasp.2016.06.021

    YANG Dandan. Aeroengine performance optimization based on Fibonacci search method[J]. Journal of Aerospace Power,2016,31(6): 1441-1449. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.06.021
    [23]
    彭靖波, 田少男, 姚凯翔. 基于GA-FTA算法的航空发动机性能寻优控制研究[C]//中国航空学会. 探索 创新 交流(第7集)−第七届中国航空学会青年科技论坛文集(上册). 北京: 中国科学技术出版社, 2016: 432-436.
    [24]
    聂友伟,李秋红,王元,等. 基于SQCQP算法的变循环发动机性能寻优控制[J]. 北京航空航天大学学报,2017,43(12): 2564-2572. doi: 10.13700/j.bh.1001-5965.2016.0926

    NIE Youwei,LI Qiuhong,WANG Yuan,et al. Optimal control of variable cycle engine performance based on SQCQP algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2017,43(12): 2564-2572. (in Chinese) doi: 10.13700/j.bh.1001-5965.2016.0926
    [25]
    李勇,韩非非,张昕喆,等. 基于遗传算法-序列二次规划的涡扇发动机最低油耗性能寻优控制[J]. 推进技术,2020,41(7): 1638-1648. doi: 10.13675/j.cnki.tjjs.190455

    LI Yong,HAN Feifei,ZHANG Xinzhe,et al. Optimal control of minimum fuel consumption performance of turbofan engine based on genetic algorithm-sequential quadratic programming[J]. Journal of Propulsion Technology,2020,41(7): 1638-1648. (in Chinese) doi: 10.13675/j.cnki.tjjs.190455
    [26]
    金崇文,郑前钢,张海波,等. 基于复合推进系统动态模型-状态变量模型的航空发动机直接推力预测控制[J]. 推进技术,2022,43(1): 354-363. doi: 10.13675/j.cnki.tjjs.200524

    JIN Chongwen,ZHENG Qiangang,ZHANG Haibo,et al. Predictive control of aero-engine direct thrust based on dynamic model of compound propulsion system-state variable model[J]. Journal of Propulsion Technology,2022,43(1): 354-363. (in Chinese) doi: 10.13675/j.cnki.tjjs.200524
    [27]
    王健康. 基于机载复合模型及SQP的发动机性能寻优控制研究[D]. 南京: 南京航空航天大学, 2010.

    WANG Jiankang. Research on engine performance optimization control based on airborne composite model and SQP[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (174) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return