Volume 38 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
JIANG Tianmu, ZHANG Xiaobo, WANG Zhanxue. Modeling and analysis of mode conversion process for STOVL propulsion system[J]. Journal of Aerospace Power, 2023, 38(6):1403-1413 doi: 10.13224/j.cnki.jasp.20210551
Citation: JIANG Tianmu, ZHANG Xiaobo, WANG Zhanxue. Modeling and analysis of mode conversion process for STOVL propulsion system[J]. Journal of Aerospace Power, 2023, 38(6):1403-1413 doi: 10.13224/j.cnki.jasp.20210551

Modeling and analysis of mode conversion process for STOVL propulsion system

doi: 10.13224/j.cnki.jasp.20210551
  • Received Date: 2021-09-27
    Available Online: 2023-03-01
  • Based on the clutch dynamic performance calculation model established by the dynamic analysis of the clutch components, the co-working equations of STOVL propulsion system mode conversion process, namely its dynamic performance simulation model, were set up, according to the coupling relationship of short takeoff and vertical landing (STOVL) propulsion system components in different working states. The control strategies for the conversion between STOVL mode and conventional mode were proposed, and the characteristics of the performance parameters during the conversion process under different clutch engagement speeds were compared. Results showed that the maximum error of the simulation model was 3.76% compared with the foreign research data in the process of mode conversion. In the process of mode conversion, the proposed control strategy can ensure that there was no overlimit of temperature and speed of STOVL propulsion system, and the surge margin change was less than 0.1%. In the process of mode conversion, the shorter clutch engagement time of mode conversion process, the greater instantaneous frictional heat generation, but the lower total heat generation.

     

  • loading
  • [1]
    郭捷,杨琳,郑宁,等. 短距/垂直起落战斗机升力风扇关键技术的探讨[J]. 航空科学技术,2008,20(2): 30-35.

    GUO Jie,YANG Lin,ZHENG Ning,et al. Investigation of critical technology for lift fan[J]. Aeronautical Science and Technology,2008,20(2): 30-35. (in Chinese)
    [2]
    朱大明. F-35B/F135一体化控制系统[J]. 国际航空,2014,59(1): 66-68.

    ZHU Daming. Integration control system of F-35B/F135[J]. International Aviation,2014,59(1): 66-68. (in Chinese)
    [3]
    BEVILAQUA P. Inventing the F-35 joint strike fighter[R]. AIAA-2009-1650, 2009.
    [4]
    MADDOCK I, HIRSCHBERG M, HIRSCHBERG M, et al. The quest for stable jet borne vertical lift: ASTOVL to F-35 STOVL[R]. AIAA-2011-6999, 2011.
    [5]
    BEVILAQUA P. Future application of the JSF variable cycle[R]. AIAA-2003-2614, 2003.
    [6]
    GOEBEL J E. Design of a lift fan engine for a heavy lift aircraft[D]. Monterey, US: Naval Postgraduate School, 2003.
    [7]
    WIEGAND C. F-35 air vehicle technology overview[R]. AIAA-2018-3368, 2018.
    [8]
    WALKER G, ALLEN D. X-35B STOVL flight control law design and flying qualities[R]. AIAA-2002-6018, 2002.
    [9]
    梁春华. F135发动机的升力风扇联轴器[J]. 航空发动机,2004,30(1): 39.

    LIANG Chunhua. Lift fan coupling of F135 engine[J]. Aeroengine,2004,30(1): 39. (in Chinese)
    [10]
    郭健. 短距起飞/垂直降落战斗机发展及关键技术分析[J]. 飞机设计,2016,36(5): 19-28.

    GUO Jian. Analysis of development and key technique for short take off and vertical landing fighter[J]. Aircraft Design,2016,36(5): 19-28. (in Chinese)
    [11]
    COX C F. F-35B auxiliary air inlet analysis and design maturation[R]. AIAA-2013-0218, 2013.
    [12]
    WURTH S P. F-35 propulsion system integration, development and verification[R]. AIAA-2018-3517, 2018.
    [13]
    WALKER G P, FULLER J W, WURTH S P. F-35B integrated flight-propulsion control development[R]. AIAA-2013-4243, 2013.
    [14]
    BEVILAQUA P M. Joint strike fighter dual-cycle propulsion system[J]. Journal of propulsion and power,2005,21(5): 778-783. doi: 10.2514/1.15228
    [15]
    BEVILAQUA P M. The shaft driven lift fan propulsion system for the joint strike fighter[R]. Virginia Beach, US: American Helicopter Society Annual, 1997.
    [16]
    刘帅,王占学,蔡元虎,等. 升力风扇和涡扇发动机组合动力系统性能模拟与分析[J]. 航空动力学报,2013,28(5): 1095-1100.

    LIU Shuai,WANG Zhanxue,CAI Yuanhu,et al. Simulation and analysis of performance for combination of lift fan and turbofan engine power system[J]. Journal of Aerospace Power,2013,28(5): 1095-1100. (in Chinese)
    [17]
    ARNULFO L,PILIDIS P,YIN J,et al. Remote lift-fan engines[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2001,215(3): 155-163. doi: 10.1243/0954410011533149
    [18]
    VARELIS A. Variable cycle engine for combat STOVL aircraft[D]. Bedfordshire, UK: Cranfield University, 2007.
    [19]
    任冰涛,李秋红,亢岚,等. 短距起飞/垂直降落发动机建模技术研究[J]. 航空动力学报,2015,30(10): 2531-2538.

    REN Bingtao,LI Qiuhong,KANG Lan,et al. Research of short take off and vertical landing engine modeling techniques[J]. Journal of Aerospace Power,2015,30(10): 2531-2538. (in Chinese)
    [20]
    符大伟,张海波. 带升力风扇的垂直起降推进系统建模研究[J]. 推进技术,2018,39(3): 685-694.

    FU Dawei,ZHANG Haibo. Modeling of a STOVL propulsion system with a lift fan[J]. Journal of Propulsion Technology,2018,39(3): 685-694. (in Chinese)
    [21]
    袁长龙,李瑞军,顾嫄媛,等. 基于常规发动机发展STOVL推进系统的总体性能方案[J]. 燃气涡轮试验与研究,2019,32(2): 7-11,6.

    YUAN Changlong,LI Ruijun,GU Yuanhui,et al. General performance scheme of developing STOVL aircraft propulsion system based on conventional turbofan engine[J]. Gas Turbine Experiment and Research,2019,32(2): 7-11,6. (in Chinese)
    [22]
    张海明,骆广琦,孟龙,等. STOVL型战斗机变循环发动机性能数值模拟[J]. 空军工程大学学报(自然科学版),2011,12(6): 13-17.

    ZHANG Haiming,LUO Guangqi,MENG Long,et al. Numerical simulation on performance of a variable cycle engine for STOVL fighter[J]. Journal of Air Force Engineering University (Natural Science Edition),2011,12(6): 13-17. (in Chinese)
    [23]
    VISSER W P, BROOMHEAD M J. GSP a generic object-oriented gas turbine simulation environment[R]. ASME Paper 2000-GT-0002, 2000.
    [24]
    张晓博,王占学,蔡元虎. 面向对象的航空发动机性能仿真系统研究[J]. 机械设计与制造,2010,48(11): 133-135.

    ZHANG Xiaobo,WANG Zhanxue,CAI Yuanhu. A study of object-oriented aero-engine performance simulation system[J]. Machinery Design and Manufacture,2010,48(11): 133-135. (in Chinese)
    [25]
    WALSH P P, FLETCHER P. Gas turbine performance[M]. Hoboken, US: John Wiley and Sons, 2004.
    [26]
    廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (207) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return