Volume 39 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
YUAN Xin, ZHAO Qijun, ZHAO Guoqing. Efficient aerodynamic prediction method of contra-rotating propellers in axial flight[J]. Journal of Aerospace Power, 2024, 39(4):20210567 doi: 10.13224/j.cnki.jasp.20210567
Citation: YUAN Xin, ZHAO Qijun, ZHAO Guoqing. Efficient aerodynamic prediction method of contra-rotating propellers in axial flight[J]. Journal of Aerospace Power, 2024, 39(4):20210567 doi: 10.13224/j.cnki.jasp.20210567

Efficient aerodynamic prediction method of contra-rotating propellers in axial flight

doi: 10.13224/j.cnki.jasp.20210567
  • Received Date: 2021-10-09
    Available Online: 2023-12-08
  • An efficient aerodynamic prediction method applicable for contra-rotating propellers in axial flight was developed based on Blade Element Momentum Theory. Firstly, the accurate decomposition of aerodynamic forces and Prandtl tip loss were employed to eliminate errors introduced by the small angle assumptions at high inflow angles. Secondly, based on the helical tip vortex evolution of the contra-rotating system, a wake superposition model was developed, and the interaction pattern was built, which took into account the axial aerodynamic interactions and circumferential aerodynamic interference that the front propeller exerted on the rear propeller. Finally, the aerodynamic model of contra-rotating propellers in axial flight was established based on inflow angle solutions. The method was applied to predict the aerodynamic performance variation with advance ratio for a contra-rotating propeller under different flight speeds. The calculated thrust and power in non-stall conditions were consistent with the measurements, and the whole propulsive efficiency agreed well with measurements. Aerodynamic prediction comparisons of the single propeller, the coaxial rotor and the contra-rotating propeller revealed that the established model can provide more reasonable performance predictions including thrusts, powers and efficiencies for contra-rotating propellers compared with conventional BEMT models, which assume small angles, neglect some of the interactions in contra-rotating system and rely on inflow velocity solutions.

     

  • loading
  • [1]
    HAGER R D,VRABEL D. Advanced turboprop project[R]. NASA SP-495,1988.
    [2]
    LESIEUTRE D J,SULLIVAN J P. The analysis of counter-rotating propeller systems[J]. SAE transactions,1985,94: 564-575.
    [3]
    STUERMER A,YIN J,AKKERMANS R. Progress in aerodynamic and aeroacoustic integration of CROR propulsion systems[J]. The Aeronautical Journal,2014,118(1208): 1137-1158. doi: 10.1017/S0001924000009829
    [4]
    GRAY W,MASTROCOLA N. Representative operating charts of propellers tested in the NACA 20-foot propeller-research tunnel[R]. NACA ARR No. 3125,1943.
    [5]
    MIKKELSON D,MITCHELL G,BOBER L. Summary of recent NASA propeller research[R]. NASA TM 83733,1984.
    [6]
    STÜRMER A,GUTIERREZ C O M,ROOSENBOOM E W M,et al. Experimental and numerical investigation of a contra rotating open-rotor flowfield[J]. Journal of Aircraft,2012,49(6): 1868-1877. doi: 10.2514/1.C031698
    [7]
    闫文辉,汤斯佳,王奉明,等. 共轴对转螺旋桨的非定常气动干扰[J]. 航空动力学报,2021,36(7): 1398-1405. YAN Wenhui,TANG Sijia,WANG Fengming,et al. Unsteady aerodynamic interactions of contra rotating propeller[J]. Journal of Aerospace Power,2021,36(7): 1398-1405. (in Chinese doi: 10.13224/j.cnki.jasp.20210051

    YAN Wenhui, TANG Sijia, WANG Fengming, et al. Unsteady aerodynamic interactions of contra rotating propeller[J]. Journal of Aerospace Power, 2021, 36(7): 1398-1405. (in Chinese) doi: 10.13224/j.cnki.jasp.20210051
    [8]
    史文博,李杰. 对转螺旋桨流场气动干扰数值模拟[J]. 航空动力学报,2019,34(4): 829-837. SHI Wenbo,LI Jie. Numerical simulation of contra-rotating propeller flowfield aerodynamic interactions[J]. Journal of Aerospace Power,2019,34(4): 829-837. (in Chinese doi: 10.13224/j.cnki.jasp.2019.04.012

    SHI Wenbo, LI Jie. Numerical simulation of contra-rotating propeller flowfield aerodynamic interactions[J]. Journal of Aerospace Power, 2019, 34(4): 829-837. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.04.012
    [9]
    GUR O,ROSEN A. Comparison between blade-element models of propellers[J]. The Aeronautical Journal,2008,112(1138): 689-704. doi: 10.1017/S0001924000002669
    [10]
    WINARTO H. BEMT algorithm for the prediction of the performance of arbitrary propellers[R]. CR COE-AL 2004-HW3-01,2004.
    [11]
    LEISHMAN J G,ANANTHAN S. An optimum coaxial rotor system for axial flight[J]. Journal of the American Helicopter Society,2008,53(4): 366-381. doi: 10.4050/JAHS.53.366
    [12]
    LEISHMAN J G. Aerodynamic performance considerations in the design of a coaxial proprotor[J]. Journal of the American Helicopter Society,2009,54(1): 12005.1-12005.14.
    [13]
    WHITMORE S A,MERRILL R S. Nonlinear large angle solutions of the blade element momentum theory propeller equations[J]. Journal of Aircraft,2012,49(4): 1126-1134. doi: 10.2514/1.C031645
    [14]
    STAHLHUT C. Aerodynamic design optimization of proprotors for convertible-rotor concepts[D]. College Park,US: United States University of Maryland,College Park,2012.
    [15]
    KHAN W,NAHON M. A propeller model for general forward flight conditions[J]. International Journal of Intelligent Unmanned Systems,2015,3(2/3): 72-92. doi: 10.1108/IJIUS-06-2015-0007
    [16]
    范中允,周洲,祝小平,等. 高鲁棒性的螺旋桨片条理论非线性修正方法[J]. 航空学报,2018,39(8): 121869. FAN Zhongyun,ZHOU Zhou,ZHU Xiaoping,et al. High-robustness nonlinear-modification method for propeller blade element momentum theory[J]. Acta Aeronautica et Astronautica Sinica,2018,39(8): 121869. (in Chinese

    FAN Zhongyun, ZHOU Zhou, ZHU Xiaoping, et al. High-robustness nonlinear-modification method for propeller blade element momentum theory[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 121869. (in Chinese)
    [17]
    AULD D J. Blade element theory for propellers[EB/OL]. (2015-11-15)[2021-07-04]. http://www.aerodynamics4students.com/propulsion/blade-element-propeller-theory.php
    [18]
    刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006.
    [19]
    LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. Cambridge: Cambridge University Press,2006: 36-43.
    [20]
    HOUGHTON E L,CARPENTER P W. Aerodynamics for engineering students[M]. 5th ed. Oxford: Butterworth/Heinemann,2003.
    [21]
    GLAUERT H. Airplane propellers[M]. Berlin,Heidelberg: Springer,1935: 265-269.
    [22]
    VALKOV T V. Aerodynamic loads computation on coaxial hingeless helicopter rotors[R]. AIAA1990-70,1990.
    [23]
    JOHNSON W. Helicopter theory[M]. New York,US: Dover Publications INC,Courier Corporation,2012: 74-76.
    [24]
    BRAMWELL A R S,DONE G,BALMFORD D. Rotor aerodynamics in axial flight[M]. Amsterdam: Elsevier,2000: 33-76.
    [25]
    CARNAHAN B,LUTHER H A,WILKES J O. Applied numerical methods[M]. New York: Wiley,1969.
    [26]
    ZHAO Qijun,ZHAO Guoqing,WANG Bo,et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor[J]. Chinese Journal of Aeronautics,2018,31(2): 214-224. doi: 10.1016/j.cja.2017.10.005
    [27]
    STACK J. Tests of airfoils designed to delay the compressibility burble[R]. NACA-TR-763,1943.
    [28]
    LADSON C L. Chordwise pressure distributions over several NACA 16-series airfoils at transonic Mach numbers up to 1.25[R]. NASA-MEMO-6-1-59L,1959.
    [29]
    EVANS A J,LINER G. A wind-tunnel investigation of the aerodynamic characteristics of a full-scale supersonic-type three-blade propeller at Mach numbers to 0.96[R]. NACA-RM-L53F01,1953.
    [30]
    HARRINGTON R D. Full-scale-tunnel investigation of the static-thrust performance of a coaxial helicopter rotor[R]. NACA Technical Note 2318,1951.
    [31]
    PLATT R J,SHUMAKER R A. Investigation of the NACA 3-(3)(05)-05 eight-blade dual-rotating propeller at forward Mach numbers to 0.925[R]. NACA RM L50D21,1950.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return