Volume 39 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
WANG Chen, LI Ying, HUO Shiyu, et al. Thermal-vibration response performance of titanium alloy acoustic liner for aero-engine[J]. Journal of Aerospace Power, 2024, 39(1):20210671 doi: 10.13224/j.cnki.jasp.20210671
Citation: WANG Chen, LI Ying, HUO Shiyu, et al. Thermal-vibration response performance of titanium alloy acoustic liner for aero-engine[J]. Journal of Aerospace Power, 2024, 39(1):20210671 doi: 10.13224/j.cnki.jasp.20210671

Thermal-vibration response performance of titanium alloy acoustic liner for aero-engine

doi: 10.13224/j.cnki.jasp.20210671
  • Received Date: 2021-11-24
    Available Online: 2023-07-04
  • For the problem of dynamic response and fatigue failure of titanium alloy acoustic liner under high temperature vibration environment, the vibration characteristics of titanium alloy acoustic liner under high temperature environment were studied by combing simulation analysis and test. The results showed that the calculation results of first-order natural frequency of titanium alloy acoustic liner at 200 ℃ were in good agreement with the test values, and the error was within 8%. Under 40g vibration environment, by comparing the simulation results with the test results, it was found that the error of the velocity response was within 26%, verifying the reliability of the numerical simulation. Using this numerical method, the stress distribution of the acoustic liner under the thermal vibration environment was calculated, and it was found that the maximum stress of the acoustic liner appeared on the honeycomb core, while the overall stress level of the panel was relatively low. With the increase of the height and thickness of the honeycomb core, the stress level of the acoustic liner decreased, while the stress level of the acoustic liner increased with the increasing thickness of the panel, and the influence of the size of the aperture on the strength of the acoustic liner can be ignored.

     

  • loading
  • [1]
    陈云永,杨小贺,卫飞飞. 大涵道比风扇设计技术发展趋势[J]. 航空学报,2017,38(9): 520953. doi: 10.7527/S1000-6893.2017.620953

    CHEN Yunyong,YANG Xiaohe,WEI Feifei. Development trend of high bypass ratio turbofans design technology[J]. Acta Aeronautica et Astronautica Sinica,2017,38(9): 520953. (in Chinese) doi: 10.7527/S1000-6893.2017.620953
    [2]
    纪双英,郝巍,刘杰. 共振吸声结构在航空发动机上的应用进展[J]. 航空工程进展,2019,10(3): 302-308.

    JI Shuangying,HAO Wei,LIU Jie. Application progress of resonance sound absorption structure in aero engines[J]. Advances in Aeronautical Science and Engineering,2019,10(3): 302-308. (in Chinese)
    [3]
    刘时秀,张卫红,呙道军,等. 飞行器宽带声振响应预示技术研究[J]. 导弹与航天运载技术,2011(5): 50-53.

    LIU Shixiu,ZHANG Weihong,GUO Daojun,et al. Study on wide-band vibro-acoustic response prediction for the aerocraft[J]. Missiles and Space Vehicles,2011(5): 50-53. (in Chinese)
    [4]
    沙云东,王建,赵奉同,等. 热声载荷下薄壁结构振动响应试验验证与疲劳分析[J]. 航空动力学报,2017,32(11): 2659-2671. doi: 10.13224/j.cnki.jasp.2017.11.013

    SHA Yundong,WANG Jian,ZHAO Fengtong,et al. Vibration response experimental verification and fatigue analysis of thin-walled structures to thermal-acoustic loads[J]. Journal of Aerospace Power,2017,32(11): 2659-2671. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.11.013
    [5]
    杨嘉丰. 航空发动机耐温钛合金降噪声衬声学特性研究[D]. 北京: 北京航空航天大学, 2019.

    YANG Jafeng. An investigation on acoustic performance of titanium alloy heatproof acoustic liner for aero-engines[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [6]
    岳喜山, 欧阳小龙, 侯金保. 钛合金蜂窝壁板结构制造技术研究[C]//第十六届全国钎焊及特种连接技术交流会论文集. 北京: 中国机械工程学会, 2019: 239-234.
    [7]
    谢宗蕻,岳喜山,孙俊锋. 钛合金蜂窝壁板隔热性能试验研究[J]. 南京航空航天大学学报,2016,48(1): 16-20. doi: 10.16356/j.1005-2615.2016.01.003

    XIE Zonghong,YUE Xishan,SUN Junfeng. Experimental study on thermal insulation performance of titanium honeycomb sandwich panels[J]. Journal of Nanjing University of Aeronautics & Astronautics,2016,48(1): 16-20. (in Chinese) doi: 10.16356/j.1005-2615.2016.01.003
    [8]
    ZHANG Xiaolei,YU Kaiping,BAI Yunhe,et al. Thermal vibration characteristics of fiber-reinforced mullite sandwich structure with ceramic foams core[J]. Composite Structures,2015,131: 99-106. doi: 10.1016/j.compstruct.2015.04.049
    [9]
    KEHOE M W, DEATON V C. Correlation of analytical and experimental hot structure vibration results[R]. NASA Technical Memorandum 104269, 1993.
    [10]
    ZHANG Wenbo,CHEN Hualing,ZHU Danhui,et al. The thermal effects on high-frequency vibration of beams using energy flow analysis[J]. Journal of Sound and Vibration,2014,333(9): 2588-2600. doi: 10.1016/j.jsv.2013.12.020
    [11]
    沙云东,艾思泽,张家铭,等. 热流环境下薄壁结构随机振动响应计算与疲劳分析[J]. 航空动力学报,2020,35(7): 1402-1412. doi: 10.13224/j.cnki.jasp.2020.07.008

    SHA Yundong,AI Size,ZHANG Jiaming,et al. Random vibration response calculation and fatigue analysis of thin-walled structures under heat flux environment[J]. Journal of Aerospace Power,2020,35(7): 1402-1412. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.07.008
    [12]
    东巳宙. 高温环境下复合材料层合板与蜂窝板力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    DONG Sizhou. The analysis of mechanical properties on composite laminated plate and honeycomb panel under the environment of high temperature[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [13]
    吴大方,赵寿根,潘兵,等. 高速飞行器中空翼结构高温热振动特性试验研究[J]. 力学学报,2013,45(4): 598-605. doi: 10.6052/0459-1879-12-360

    WU Dafang,ZHAO Shougen,PAN Bing,et al. Experimental study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics,2013,45(4): 598-605. (in Chinese) doi: 10.6052/0459-1879-12-360
    [14]
    吴大方,赵寿根,晏震乾,等. 巡航导弹防热部件热-振联合试验[J]. 航空动力学报,2009,24(7): 1507-1511. doi: 10.13224/j.cnki.jasp.2009.07.034

    WU Dafang,ZHAO Shougen,YAN Zhenqian,et al. Experimental study on thermal-vibration test of thermal insulating component for cruise missile[J]. Journal of Aerospace Power,2009,24(7): 1507-1511. (in Chinese) doi: 10.13224/j.cnki.jasp.2009.07.034
    [15]
    吴大方,林鹭劲,吴文军,等. 1500 ℃极端高温环境下高超声速飞行器轻质隔热材料热/振联合试验[J]. 航空学报,2020,41(7): 223612.

    WU Dafang,LIN Lujin,WU Wenjun,et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1500 ℃[J]. Acta Aeronautica et Astronautica Sinica,2020,41(7): 223612. (in Chinese)
    [16]
    王晨,陈海波,王用岩,等. 温度效应对铝合金壁板高频声振疲劳寿命的影响研究[J]. 应用力学学报,2018,35(4): 701-708, 926.

    WANG Chen,CHEN Haibo,WANG Yongyan,et al. Thermal effect on the fatigue life of aluminum panel under high-frequency acoustic excitation[J]. Chinese Journal of Applied Mechanics,2018,35(4): 701-708, 926. (in Chinese)
    [17]
    王晨,燕群,陈海波,等. 温度效应对壁板动响应及疲劳寿命影响研究[J]. 计算机仿真,2019,36(6): 68-72. doi: 10.3969/j.issn.1006-9348.2019.06.014

    WANG Chen,YAN Qun,CHEN Haibo,et al. Influence of temperature effect on dynamic response and fatigue life of panel[J]. Computer Simulation,2019,36(6): 68-72. (in Chinese) doi: 10.3969/j.issn.1006-9348.2019.06.014
    [18]
    李其汉. 航空发动机强度振动测试技术[M]. 北京: 北京航空航天大学出版社, 1995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (148) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return