Volume 39 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
WANG Jianming, LIU Xiaodong, XIA Xuanze, et al. Flow field reconstruction and characteristic analysis of dual-throat control vector nozzle based on dynamic mode decomposition[J]. Journal of Aerospace Power, 2024, 39(6):20210679 doi: 10.13224/j.cnki.jasp.20210679
Citation: WANG Jianming, LIU Xiaodong, XIA Xuanze, et al. Flow field reconstruction and characteristic analysis of dual-throat control vector nozzle based on dynamic mode decomposition[J]. Journal of Aerospace Power, 2024, 39(6):20210679 doi: 10.13224/j.cnki.jasp.20210679

Flow field reconstruction and characteristic analysis of dual-throat control vector nozzle based on dynamic mode decomposition

doi: 10.13224/j.cnki.jasp.20210679
  • Received Date: 2021-11-29
    Available Online: 2024-01-20
  • The three-dimensional flow field of the thrust vectoring nozzle was simulated by detached eddy simulation method, and the pressure coefficient and density gradient distribution of flow field were analyzed. The dynamic modal decomposition (DMD) technology was applied to modal decomposition of the pressure coefficient of the z=0 section, the obtained modal recombination flow field was selected to evolve in time. The results indicated that the first five-order modes obtained by dynamic modal decomposition can be used to reconstruct the pressure coefficient field of the dual-throat control vector nozzle more completely. The first-order mode mainly illustrated the swing phenomenon of the separated shock wave and its influence on the pressure pulsation of the shear layer between the recirculation zone and the main flow; the second-order mode mainly illustrated the separation of the vortex system in the shear layer. The third-order mode mainly illustrated the change in the intensity of the separated shock wave, the fourth and fifth-order modes were mainly manifested as high-order oscillations in the position and intensity of the separated shock wave and the shear layer near the recirculation zone.

     

  • loading
  • [1]
    王杰. 射流推力矢量技术的研究现状与发展[J]. 科技与创新,2020(10): 81-83,85. WANG Jie. Research status and development of jet thrust vector technology[J]. Science and Technology & Innovation,2020(10): 81-83,85. (in Chinese

    WANG Jie. Research status and development of jet thrust vector technology[J]. Science and Technology & Innovation, 2020(10): 81-83, 85. (in Chinese)
    [2]
    贾东兵,周吉利,邓洪伟. 固定几何气动矢量喷管技术综述[J]. 航空发动机,2012,38(6): 29-33,42. JIA Dongbing,ZHOU Jili,DENG Hongwei. Summary of fluidic control fixed geometry nozzle technology[J]. Aeroengine,2012,38(6): 29-33,42. (in Chinese

    JIA Dongbing, ZHOU Jili, DENG Hongwei. Summary of fluidic control fixed geometry nozzle technology[J]. Aeroengine, 2012, 38(6): 29-33, 42. (in Chinese)
    [3]
    王伟,赵振,金文栋,等. 基于激波控制的S弯二元矢量喷管数值模拟[J]. 航空发动机,2021,47(5): 19-25. WANG Wei,ZHAO Zhen,JIN Wendong,et al. Numerical simulation of serpentine 2-D vectoring nozzle based on shock wave control[J]. Aeroengine,2021,47(5): 19-25. (in Chinese

    WANG Wei, ZHAO Zhen, JIN Wendong, et al. Numerical simulation of serpentine 2-D vectoring nozzle based on shock wave control[J]. Aeroengine, 2021, 47(5): 19-25. (in Chinese)
    [4]
    BANAZADEH A,SAGHAFI F,GHOREYSHI M,et al. Multi-directional co-flow fluidic thrust vectoring intended for a small gas turbine: AIAA 2007-2940 [R]. Reston: AIAA,2007.
    [5]
    DORES D,MADRUGA SANTOS M,KROTHAPALLI A,et al. Characterization of a counterflow thrust vectoring scheme on a gas turbine engine exhaust jet: AIAA 2006-3516[R]. Reston: AIAA,2006.
    [6]
    DEERE K. Summary of fluidic thrust vectoring research conducted at NASA langley research center: AIAA-2003-3800[R]. Orlando: AIAA,2003.
    [7]
    DEERE K,BERRIER B,FLAMM J,et al. A computational study of a new dual throat fluidic thrust vectoring nozzle concept: AIAA 2005-3502 [R]. Tucson,US: AIAA,2005
    [8]
    DEERE K,FLAMM J,BERRIER B,et al. Computational study of an axisymmetric dual throat fluidic thrust vectoring nozzle for a supersonic aircraft application: AIAA 2007-5085[R]. Cincinnati,US: AIAA,2007
    [9]
    FLAMM J,DEERE K,MASON M,et al. Design enhancements of the two-dimensional,dual throat fluidic thrust vectoring nozzle concept: AIAA 2006-3701[R]. Reston: AIAA,2006.
    [10]
    谭慧俊,陈智. 二元双喉道射流推力矢量喷管的数值模拟研究[J]. 航空动力学报,2007,22(10): 1678-1684. TAN Huijun,CHEN Zhi. A computational study of 2-D dual-throat fluidic thrust-vectoring nozzles[J]. Journal of Aerospace Power,2007,22(10): 1678-1684. (in Chinese

    TAN Huijun, CHEN Zhi. A computational study of 2-D dual-throat fluidic thrust-vectoring nozzles[J]. Journal of Aerospace Power, 2007, 22(10): 1678-1684. (in Chinese)
    [11]
    汪明生,杨平. 双喉道推力矢量喷管的内流特性研究[J]. 推进技术,2008,29(5): 566-572. WANG Mingsheng,YANG Ping. Study of dual throat nozzle internal flow characteristic[J]. Journal of Propulsion Technology,2008,29(5): 566-572. (in Chinese

    WANG Mingsheng, YANG Ping. Study of dual throat nozzle internal flow characteristic[J]. Journal of Propulsion Technology, 2008, 29(5): 566-572. (in Chinese)
    [12]
    范志鹏,徐惊雷,汪阳生. 下游喉道对双喉道气动矢量喷管气动性能的影响[J]. 航空动力学报,2015,30(3): 580-587. FAN Zhipeng,XU Jinglei,WANG Yangsheng. Effects of downstream throat on aerodynamic performance of dual throat nozzle[J]. Journal of Aerospace Power,2015,30(3): 580-587. (in Chinese

    FAN Zhipeng, XU Jinglei, WANG Yangsheng. Effects of downstream throat on aerodynamic performance of dual throat nozzle[J]. Journal of Aerospace Power, 2015, 30(3): 580-587. (in Chinese)
    [13]
    范志鹏,徐惊雷,郭帅. 次流通道对双喉道气动矢量喷管的性能影响研究[J]. 推进技术,2014,35(9): 1174-1180. FAN Zhipeng,XU Jinglei,GUO Shuai. Effects of secondary injection pipe on dual throat nozzle ThrustVectoring performances[J]. Journal of Propulsion Technology,2014,35(9): 1174-1180. (in Chinese

    FAN Zhipeng, XU Jinglei, GUO Shuai. Effects of secondary injection pipe on dual throat nozzle ThrustVectoring performances[J]. Journal of Propulsion Technology, 2014, 35(9): 1174-1180. (in Chinese)
    [14]
    顾瑞. 新型双喉道气动矢量喷管机理与关键技术研究[D]. 南京: 南京航空航天大学,2013. GU Rui. Research on the key technology of new dual throat fluidic vectoring thrust nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2013. (in Chinese

    GU Rui. Research on the key technology of new dual throat fluidic vectoring thrust nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [15]
    SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics,2010,656: 5-28. doi: 10.1017/S0022112010001217
    [16]
    王建明,王涵,桂琳. 压气机叶栅叶顶间隙流的动力学模态分解[J]. 推进技术,2018,39(3): 520-527. WANG Jianming,WANG Han,GUI Lin. Dynamic mode decomposition of tip clearance flow in a compressor cascade[J]. Journal of Propulsion Technology,2018,39(3): 520-527. (in Chinese

    WANG Jianming, WANG Han, GUI Lin. Dynamic mode decomposition of tip clearance flow in a compressor cascade[J]. Journal of Propulsion Technology, 2018, 39(3): 520-527. (in Chinese)
    [17]
    叶坤,叶正寅,武洁,等. 基于DMD方法的翼型大迎角失速流动稳定性研究[J]. 空气动力学学报,2018,36(3): 518-528. YE Kun,YE Zhengyin,WU Jie,et al. Stability of stalled flow field at high angle of attack based on DMD method[J]. Acta Aerodynamica Sinica,2018,36(3): 518-528. (in Chinese

    YE Kun, YE Zhengyin, WU Jie, et al. Stability of stalled flow field at high angle of attack based on DMD method[J]. Acta Aerodynamica Sinica, 2018, 36(3): 518-528. (in Chinese)
    [18]
    姚李超,付超,张俊强,等. 非定常来流压力下基于DMD方法的预冷器换热特性[J]. 航空动力学报,2020,35(10): 2064-2077. YAO Lichao,FU Chao,ZHANG Junqiang,et al. Heat transfer performance of pre-cooler under unsteady inflow pressure condition using dynamic mode decomposition method[J]. Journal of Aerospace Power,2020,35(10): 2064-2077. (in Chinese

    YAO Lichao, FU Chao, ZHANG Junqiang, et al. Heat transfer performance of pre-cooler under unsteady inflow pressure condition using dynamic mode decomposition method[J]. Journal of Aerospace Power, 2020, 35(10): 2064-2077. (in Chinese)
    [19]
    WANG Jianming,LUAN Siqi,ZHU Jianyong,et al. Fourier mode decomposition of unsteady flows in a single injection port fluidic thrust vectoring nozzle[J]. International Journal of Aeronautical and Space Sciences,2021,22(2): 223-238. doi: 10.1007/s42405-020-00298-z
    [20]
    ROWLEY C W,MEZIĆ I,BAGHERI S,et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics,2009,641: 115-127. doi: 10.1017/S0022112009992059
    [21]
    孙国勇,董加新,赵志高,等. 动力学模态分解方法重构及预测流场误差分析[J]. 江苏大学学报(自然科学版),2021,42(2): 145-152. SUN Guoyong,DONG Jiaxin,ZHAO Zhigao,et al. Error analysis of dynamic modal decomposition method reconstruction and prediction for flow field[J]. Journal of Jiangsu University (Natural Science Edition),2021,42(2): 145-152. (in Chinese

    SUN Guoyong, DONG Jiaxin, ZHAO Zhigao, et al. Error analysis of dynamic modal decomposition method reconstruction and prediction for flow field[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42(2): 145-152. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (38) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return