Citation: | WANG Jianming, LIU Xiaodong, XIA Xuanze, et al. Flow field reconstruction and characteristic analysis of dual-throat control vector nozzle based on dynamic mode decomposition[J]. Journal of Aerospace Power, 2024, 39(6):20210679 doi: 10.13224/j.cnki.jasp.20210679 |
The three-dimensional flow field of the thrust vectoring nozzle was simulated by detached eddy simulation method, and the pressure coefficient and density gradient distribution of flow field were analyzed. The dynamic modal decomposition (DMD) technology was applied to modal decomposition of the pressure coefficient of the
[1] |
王杰. 射流推力矢量技术的研究现状与发展[J]. 科技与创新,2020(10): 81-83,85. WANG Jie. Research status and development of jet thrust vector technology[J]. Science and Technology & Innovation,2020(10): 81-83,85. (in Chinese
WANG Jie. Research status and development of jet thrust vector technology[J]. Science and Technology & Innovation, 2020(10): 81-83, 85. (in Chinese)
|
[2] |
贾东兵,周吉利,邓洪伟. 固定几何气动矢量喷管技术综述[J]. 航空发动机,2012,38(6): 29-33,42. JIA Dongbing,ZHOU Jili,DENG Hongwei. Summary of fluidic control fixed geometry nozzle technology[J]. Aeroengine,2012,38(6): 29-33,42. (in Chinese
JIA Dongbing, ZHOU Jili, DENG Hongwei. Summary of fluidic control fixed geometry nozzle technology[J]. Aeroengine, 2012, 38(6): 29-33, 42. (in Chinese)
|
[3] |
王伟,赵振,金文栋,等. 基于激波控制的S弯二元矢量喷管数值模拟[J]. 航空发动机,2021,47(5): 19-25. WANG Wei,ZHAO Zhen,JIN Wendong,et al. Numerical simulation of serpentine 2-D vectoring nozzle based on shock wave control[J]. Aeroengine,2021,47(5): 19-25. (in Chinese
WANG Wei, ZHAO Zhen, JIN Wendong, et al. Numerical simulation of serpentine 2-D vectoring nozzle based on shock wave control[J]. Aeroengine, 2021, 47(5): 19-25. (in Chinese)
|
[4] |
BANAZADEH A,SAGHAFI F,GHOREYSHI M,et al. Multi-directional co-flow fluidic thrust vectoring intended for a small gas turbine: AIAA 2007-2940 [R]. Reston: AIAA,2007.
|
[5] |
DORES D,MADRUGA SANTOS M,KROTHAPALLI A,et al. Characterization of a counterflow thrust vectoring scheme on a gas turbine engine exhaust jet: AIAA 2006-3516[R]. Reston: AIAA,2006.
|
[6] |
DEERE K. Summary of fluidic thrust vectoring research conducted at NASA langley research center: AIAA-2003-3800[R]. Orlando: AIAA,2003.
|
[7] |
DEERE K,BERRIER B,FLAMM J,et al. A computational study of a new dual throat fluidic thrust vectoring nozzle concept: AIAA 2005-3502 [R]. Tucson,US: AIAA,2005.
|
[8] |
DEERE K,FLAMM J,BERRIER B,et al. Computational study of an axisymmetric dual throat fluidic thrust vectoring nozzle for a supersonic aircraft application: AIAA 2007-5085[R]. Cincinnati,US: AIAA,2007.
|
[9] |
FLAMM J,DEERE K,MASON M,et al. Design enhancements of the two-dimensional,dual throat fluidic thrust vectoring nozzle concept: AIAA 2006-3701[R]. Reston: AIAA,2006.
|
[10] |
谭慧俊,陈智. 二元双喉道射流推力矢量喷管的数值模拟研究[J]. 航空动力学报,2007,22(10): 1678-1684. TAN Huijun,CHEN Zhi. A computational study of 2-D dual-throat fluidic thrust-vectoring nozzles[J]. Journal of Aerospace Power,2007,22(10): 1678-1684. (in Chinese
TAN Huijun, CHEN Zhi. A computational study of 2-D dual-throat fluidic thrust-vectoring nozzles[J]. Journal of Aerospace Power, 2007, 22(10): 1678-1684. (in Chinese)
|
[11] |
汪明生,杨平. 双喉道推力矢量喷管的内流特性研究[J]. 推进技术,2008,29(5): 566-572. WANG Mingsheng,YANG Ping. Study of dual throat nozzle internal flow characteristic[J]. Journal of Propulsion Technology,2008,29(5): 566-572. (in Chinese
WANG Mingsheng, YANG Ping. Study of dual throat nozzle internal flow characteristic[J]. Journal of Propulsion Technology, 2008, 29(5): 566-572. (in Chinese)
|
[12] |
范志鹏,徐惊雷,汪阳生. 下游喉道对双喉道气动矢量喷管气动性能的影响[J]. 航空动力学报,2015,30(3): 580-587. FAN Zhipeng,XU Jinglei,WANG Yangsheng. Effects of downstream throat on aerodynamic performance of dual throat nozzle[J]. Journal of Aerospace Power,2015,30(3): 580-587. (in Chinese
FAN Zhipeng, XU Jinglei, WANG Yangsheng. Effects of downstream throat on aerodynamic performance of dual throat nozzle[J]. Journal of Aerospace Power, 2015, 30(3): 580-587. (in Chinese)
|
[13] |
范志鹏,徐惊雷,郭帅. 次流通道对双喉道气动矢量喷管的性能影响研究[J]. 推进技术,2014,35(9): 1174-1180. FAN Zhipeng,XU Jinglei,GUO Shuai. Effects of secondary injection pipe on dual throat nozzle ThrustVectoring performances[J]. Journal of Propulsion Technology,2014,35(9): 1174-1180. (in Chinese
FAN Zhipeng, XU Jinglei, GUO Shuai. Effects of secondary injection pipe on dual throat nozzle ThrustVectoring performances[J]. Journal of Propulsion Technology, 2014, 35(9): 1174-1180. (in Chinese)
|
[14] |
顾瑞. 新型双喉道气动矢量喷管机理与关键技术研究[D]. 南京: 南京航空航天大学,2013. GU Rui. Research on the key technology of new dual throat fluidic vectoring thrust nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2013. (in Chinese
GU Rui. Research on the key technology of new dual throat fluidic vectoring thrust nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
|
[15] |
SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics,2010,656: 5-28. doi: 10.1017/S0022112010001217
|
[16] |
王建明,王涵,桂琳. 压气机叶栅叶顶间隙流的动力学模态分解[J]. 推进技术,2018,39(3): 520-527. WANG Jianming,WANG Han,GUI Lin. Dynamic mode decomposition of tip clearance flow in a compressor cascade[J]. Journal of Propulsion Technology,2018,39(3): 520-527. (in Chinese
WANG Jianming, WANG Han, GUI Lin. Dynamic mode decomposition of tip clearance flow in a compressor cascade[J]. Journal of Propulsion Technology, 2018, 39(3): 520-527. (in Chinese)
|
[17] |
叶坤,叶正寅,武洁,等. 基于DMD方法的翼型大迎角失速流动稳定性研究[J]. 空气动力学学报,2018,36(3): 518-528. YE Kun,YE Zhengyin,WU Jie,et al. Stability of stalled flow field at high angle of attack based on DMD method[J]. Acta Aerodynamica Sinica,2018,36(3): 518-528. (in Chinese
YE Kun, YE Zhengyin, WU Jie, et al. Stability of stalled flow field at high angle of attack based on DMD method[J]. Acta Aerodynamica Sinica, 2018, 36(3): 518-528. (in Chinese)
|
[18] |
姚李超,付超,张俊强,等. 非定常来流压力下基于DMD方法的预冷器换热特性[J]. 航空动力学报,2020,35(10): 2064-2077. YAO Lichao,FU Chao,ZHANG Junqiang,et al. Heat transfer performance of pre-cooler under unsteady inflow pressure condition using dynamic mode decomposition method[J]. Journal of Aerospace Power,2020,35(10): 2064-2077. (in Chinese
YAO Lichao, FU Chao, ZHANG Junqiang, et al. Heat transfer performance of pre-cooler under unsteady inflow pressure condition using dynamic mode decomposition method[J]. Journal of Aerospace Power, 2020, 35(10): 2064-2077. (in Chinese)
|
[19] |
WANG Jianming,LUAN Siqi,ZHU Jianyong,et al. Fourier mode decomposition of unsteady flows in a single injection port fluidic thrust vectoring nozzle[J]. International Journal of Aeronautical and Space Sciences,2021,22(2): 223-238. doi: 10.1007/s42405-020-00298-z
|
[20] |
ROWLEY C W,MEZIĆ I,BAGHERI S,et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics,2009,641: 115-127. doi: 10.1017/S0022112009992059
|
[21] |
孙国勇,董加新,赵志高,等. 动力学模态分解方法重构及预测流场误差分析[J]. 江苏大学学报(自然科学版),2021,42(2): 145-152. SUN Guoyong,DONG Jiaxin,ZHAO Zhigao,et al. Error analysis of dynamic modal decomposition method reconstruction and prediction for flow field[J]. Journal of Jiangsu University (Natural Science Edition),2021,42(2): 145-152. (in Chinese
SUN Guoyong, DONG Jiaxin, ZHAO Zhigao, et al. Error analysis of dynamic modal decomposition method reconstruction and prediction for flow field[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42(2): 145-152. (in Chinese)
|