Volume 39 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
TIAN Xueliang, XU Ying, WANG Xuemin, et al. Analysis of mechanical properties of SiCp/Al composites based on three-dimensional random meso-model[J]. Journal of Aerospace Power, 2024, 39(6):20210687 doi: 10.13224/j.cnki.jasp.20210687
Citation: TIAN Xueliang, XU Ying, WANG Xuemin, et al. Analysis of mechanical properties of SiCp/Al composites based on three-dimensional random meso-model[J]. Journal of Aerospace Power, 2024, 39(6):20210687 doi: 10.13224/j.cnki.jasp.20210687

Analysis of mechanical properties of SiCp/Al composites based on three-dimensional random meso-model

doi: 10.13224/j.cnki.jasp.20210687
  • Received Date: 2021-12-01
    Available Online: 2024-01-20
  • Based on the mesoscopic composition and structural characteristics of particle reinforced aluminum matrix composites, a three-dimensional random meso particle reinforced composites analysis model and method considering particle, matrix and interface properties are established. On the meso scale, cubic particle, spherical particle and three-dimensional random polyhedron models are used to characterize the shape of particles respectively. According to the particle size distribution data obtained from particle raw material particle size analysis, a three-dimensional random representative volume element considering the random characteristics of particle spatial distribution and the probability distribution characteristics of particle size is established. Based on Ludwik model, considering the quenching hardening effect, the elastic-plastic constitutive relationship of aluminum matrix is described. The ductile damage of matrix, the elastic-brittle failure of SiC particles and the tensile cracking behavior of interface are considered. The deformation and damage process of material in uniaxial tension are simulated. The uniaxial tensile test verification of SiCp/Al2009 composite standard parts is carried out. The results show that the maximum errors of elastic modulus, yield strength and tensile strength are less than 5%, 5% and 11% respectively; The prediction result of elastic modulus is less affected by particle shape; Among them, the three-dimensional random polyhedron model has the highest prediction accuracy of tensile strength, and can reflect the failure modes of matrix ductile fracture, particle brittle failure and interface debonding in the tensile fracture process of particle reinforced composites; The model and method can provide a useful reference for the analysis of meso damage mechanism and macro mechanical properties of particle reinforced aluminum matrix composites.

     

  • loading
  • [1]
    王文明,潘复生,曾苏民. 碳化硅颗粒增强铝基复合材料开发与应用的研究现状[J]. 兵器材料科学与工程,2004,27(3): 61-67. WANG Wenming,PAN Fusheng,ZENG Sumin. Current status of development and application in SiCp/Al composites[J]. Ordnance Material Science and Engineering,2004,27(3): 61-67. (in Chinese doi: 10.3969/j.issn.1004-244X.2004.03.016

    WANG Wenming, PAN Fusheng, ZENG Sumin. Current status of development and application in SiCp/Al composites[J]. Ordnance Material Science and Engineering, 2004, 27(3): 61-67. (in Chinese) doi: 10.3969/j.issn.1004-244X.2004.03.016
    [2]
    崔岩. 碳化硅颗粒增强铝基复合材料的航空航天应用[J]. 材料工程,2002,30(6): 3-6. CUI Yan. Aerospace applications of silicon carbide particulate reinforced aluminium matrix composites[J]. Journal of Materials Engineering,2002,30(6): 3-6. (in Chinese doi: 10.3969/j.issn.1001-4381.2002.06.001

    CUI Yan. Aerospace applications of silicon carbide particulate reinforced aluminium matrix composites[J]. Journal of Materials Engineering, 2002, 30(6): 3-6. (in Chinese) doi: 10.3969/j.issn.1001-4381.2002.06.001
    [3]
    樊建中,肖伯律,徐骏,等. SiCp/Al复合材料在航空航天领域的应用与发展[J]. 材料导报,2007,21(10): 98-101. FAN Jianzhong,XIAO Bolyu,XU Jun,et al. Development and applications of SiCp/Al composites in aerospace field[J]. Materials Review,2007,21(10): 98-101. (in Chinese doi: 10.3321/j.issn:1005-023X.2007.10.026

    FAN Jianzhong, XIAO Bolyu, XU Jun, et al. Development and applications of SiCp/Al composites in aerospace field[J]. Materials Review, 2007, 21(10): 98-101. (in Chinese) doi: 10.3321/j.issn:1005-023X.2007.10.026
    [4]
    SRIVATSAN T S,IBRAHIM I A,MOHAMED F A,et al. Processing techniques for particulate-reinforced metal aluminium matrix composites[J]. Journal of Materials Science,1991,26(22): 5965-5978. doi: 10.1007/BF01113872
    [5]
    董翠鸽,王日初,彭超群,等. SiCp/Al复合材料研究进展[J]. 中国有色金属学报,2021,31(11): 3161-3181. DONG Cuige,WANG Richu,PENG Chaoqun,et al. Research progress in SiCp/Al composites[J]. The Chinese Journal of Nonferrous Metals,2021,31(11): 3161-3181. (in Chinese

    DONG Cuige, WANG Richu, PENG Chaoqun, et al. Research progress in SiCp/Al composites[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11): 3161-3181. (in Chinese)
    [6]
    吕毓雄,毕敬,陈礼清,等. SiCp尺寸及基体强度对铝基复合材料破坏机制的影响[J]. 金属学报,1998,34(11): 1188-1192. LÜ Yuxiong,BI Jing,CHEN Liqing,et al. Effects of particle size and matrix strength on the failure mechanism of sicp reinforced aluminium matrix composites[J]. Acta Metallrugica Sinica,1998,34(11): 1188-1192. (in Chinese doi: 10.3321/j.issn:0412-1961.1998.11.014

    LÜ Yuxiong, BI Jing, CHEN Liqing, et al. Effects of particle size and matrix strength on the failure mechanism of sicp reinforced aluminium matrix composites[J]. Acta Metallrugica Sinica, 1998, 34(11): 1188-1192. (in Chinese) doi: 10.3321/j.issn:0412-1961.1998.11.014
    [7]
    刘龙飞,戴兰宏,杨国伟. SiCP颗粒增强金属基6151Al复合材料中的增强颗粒尺寸效应[J]. 湘潭大学自然科学学报,2001,23(4): 46-50. LIU Longfei,DAI Lanhong,YANG Guowei. Reinforced particle dimension effect in SiCP particle reinforcing metal base 6151Al composite[J]. Natural Science Journal of Xiangtan University,2001,23(4): 46-50. (in Chinese

    LIU Longfei, DAI Lanhong, YANG Guowei. Reinforced particle dimension effect in SiCP particle reinforcing metal base 6151Al composite[J]. Natural Science Journal of Xiangtan University, 2001, 23(4): 46-50. (in Chinese)
    [8]
    晏义伍. 颗粒尺寸对SiCp/Al复合材料性能的影响规律及其数值模拟[D]. 哈尔滨: 哈尔滨工业大学,2007. YAN Yiwu. Effect of particle size on properties of SiCp/Al composites and its numerical simulation[D]. Harbin: Harbin Institute of Technology,2007. (in Chinese

    YAN Yiwu. Effect of particle size on properties of SiCp/Al composites and its numerical simulation[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese)
    [9]
    WANG Zhangwei,SONG Min,SUN Chao,et al. Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites[J]. Materials Science and Engineering: A,2011,528(3): 1131-1137. doi: 10.1016/j.msea.2010.11.028
    [10]
    DAI L H,LING Z,BAI Y L. Size-dependent inelastic behavior of particle-reinforced metal–matrix composites[J]. Composites Science and Technology,2001,61(8): 1057-1063. doi: 10.1016/S0266-3538(00)00235-9
    [11]
    原国森,李明科,王振永,等. 碳化硅体积分数对SiCP/6061Al复合材料组织和性能的影响[J]. 热加工工艺,2018,47(16): 130-132. YUAN Guosen,LI Mingke,WANG Zhenyong,et al. Effect of Si C volume fraction on microstructure and properties of SiCP/6061Al composite[J]. Hot Working Technology,2018,47(16): 130-132. (in Chinese

    YUAN Guosen, LI Mingke, WANG Zhenyong, et al. Effect of Si C volume fraction on microstructure and properties of SiCP/6061Al composite[J]. Hot Working Technology, 2018, 47(16): 130-132. (in Chinese)
    [12]
    SONG Min. Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites[J]. Transactions of Nonferrous Metals Society of China,2009,19(6): 1400-1404. doi: 10.1016/S1003-6326(09)60040-6
    [13]
    XIU Ziyang,CHEN Guoqin,WU Gaohui,et al. Effect of volume fraction on microstructure and mechanical properties of Si3N4/Al composites[J]. Transactions of Nonferrous Metals Society of China,2011,21: 285-289. doi: 10.1016/S1003-6326(11)61592-6
    [14]
    NIE Junhui,FAN Jianzhong,ZHANG Shaoming,et al. Tensile and fracture properties of 15vol% SiCp/2009Al composites fabricated by hot isostatic pressing and hot extrusion processes[J]. Acta Metallurgica Sinica (English Letters),2014,27(5): 875-884. doi: 10.1007/s40195-014-0127-2
    [15]
    HONG S H,CHUNG K H. The effects of processing parameters on mechanical properties of SiCw/2124Al composites[J]. Journal of Materials Processing Technology,1995,48(1/2/3/4): 349-355.
    [16]
    DONG Shanliang,ZHANG Bin,ZHAN Yuli,et al. Effect of extrusion temperature on the microstructure and mechanical properties of SiCnw/2024Al composite[J]. Materials,2019,12(17): 2769-2782. doi: 10.3390/ma12172769
    [17]
    ZHANG H Z,WANG H Y,LIU F F,et al. Investigation on femtosecond laser ablative processing of SiCp/AA2024 composites[J]. Journal of Manufacturing Processes,2020,49: 227-233. doi: 10.1016/j.jmapro.2019.08.021
    [18]
    SINGH P M,LEWANDOWSKI J J. Effects of heat treatment and reinforcement size[J]. Metallurgical Transactions A,1993,24(11): 2531-2543. doi: 10.1007/BF02646532
    [19]
    WANG Tao,XIE Lijing,WANG Xibin. Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite[J]. The International Journal of Advanced Manufacturing Technology,2015,79(5): 1185-1194.
    [20]
    CHEN Shenggui,HASSANZADEH-AGHDAM M K,ANSARI R. An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containing SiC nanoparticles[J]. Journal of Alloys and Compounds,2018,767: 632-641. doi: 10.1016/j.jallcom.2018.07.102
    [21]
    GAO Xiang,ZHANG Xuexi,QIAN Mingfang,et al. Effect of reinforcement shape on fracture behaviour of SiC/Al composites with network architecture[J]. Composite Structures,2019,215: 411-420. doi: 10.1016/j.compstruct.2019.02.067
    [22]
    ZHANG J F,ANDRÄ H,ZHANG X X,et al. An enhanced finite element model considering multi strengthening and damage mechanisms in particle reinforced metal matrix composites[J]. Composite Structures,2019,226: 111281. doi: 10.1016/j.compstruct.2019.111281
    [23]
    SEGURADO J,LLORCA J. Computational micromechanics of composites: the effect of particle spatial distribution[J]. Mechanics of Materials,2006,38(8/9/10): 873-883.
    [24]
    LI Mingshan,GHOSH S,ROUNS T N,et al. Serial sectioning method in the construction of 3-D microstructures for particle-reinforced MMCs[J]. Materials Characterization,1998,41(2/3): 81-95.
    [25]
    CHAWLA N,SIDHU R S,GANESH V V. Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites[J]. Acta Materialia,2006,54(6): 1541-1548. doi: 10.1016/j.actamat.2005.11.027
    [26]
    HAN W,ECKSCHLAGER A,BÖHM H J. The effects of three-dimensional multi-particle arrangements on the mechanical behavior and damage initiation of particle-reinforced MMCs[J]. Composites Science and Technology,2001,61(11): 1581-1590. doi: 10.1016/S0266-3538(01)00061-6
    [27]
    YUAN Zhanwei,LI Fuguo,XUE Fengmei,et al. Analysis of the stress states and interface damage in a particle reinforced composite based on a micromodel using cohesive elements[J]. Materials Science and Engineering: A,2014,589: 288-302. doi: 10.1016/j.msea.2013.09.097
    [28]
    SINGH H,MAO Y,SREERANGANATHAN A,et al. Application of digital image processing for implementation of complex realistic particle shapes/morphologies in computer simulated heterogeneous microstructures[J]. Modelling and Simulation in Materials Science and Engineering,2006,14(3): 351-363. doi: 10.1088/0965-0393/14/3/002
    [29]
    SU Yishi,OUYANG Qiubao,ZHANG Wenlong,et al. Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites[J]. Materials Science and Engineering: A,2014,597: 359-369. doi: 10.1016/j.msea.2014.01.024
    [30]
    DALE O K. MatWeb metal material data sheets(MDS)[EB/OL]. (2011-01-26)[2021-12-01]. http://app.knovel.com/hotlink/toc/id:kpMMDS0002/metal-material-data-sheets/metal-material-data-sheets.
    [31]
    ZHANG J F,ZHANG X X,WANG Q Z,et al. Simulations of deformation and damage processes of SiCp/Al composites during tension[J]. Journal of Materials Science & Technology,2018,34(4): 627-634.
    [32]
    SHAO J C,XIAO B L,WANG Q Z,et al. An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites[J]. Composites Science and Technology,2011,71(1): 39-45. doi: 10.1016/j.compscitech.2010.09.014
    [33]
    NAN C W,CLARKE D R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites[J]. Acta Materialia,1996,44(9): 3801-3811. doi: 10.1016/1359-6454(96)00008-0
    [34]
    HILLERBORG A,MODÉER M,PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research,1976,6(6): 773-781. doi: 10.1016/0008-8846(76)90007-7
    [35]
    ZHANG Jie,OUYANG Qiubao,GUO Qiang,et al. 3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites[J]. Composites Science and Technology,2016,123: 1-9. doi: 10.1016/j.compscitech.2015.11.014
    [36]
    LAGACÉ H,LLOYD D J. Microstructural analysis of Al-SiC composites[J]. Canadian Metallurgical Quarterly,1989,28(2): 145-152. doi: 10.1179/cmq.1989.28.2.145
    [37]
    LEE J C,SUBRAMANIAN K N. Failure behaviour of particulate-reinforced aluminium alloy composites under uniaxial tension[J]. Journal of Materials Science,1992,27(20): 5453-5462. doi: 10.1007/BF00541606
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (43) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return