Volume 39 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
ZHAO Honghua, SONG Shuangwen, WANG Zhikai. Multi-objective optimization of impingement cooling of concave wall based on NSGA-Ⅱ algorithm[J]. Journal of Aerospace Power, 2024, 39(6):20210688 doi: 10.13224/j.cnki.jasp.20210688
Citation: ZHAO Honghua, SONG Shuangwen, WANG Zhikai. Multi-objective optimization of impingement cooling of concave wall based on NSGA-Ⅱ algorithm[J]. Journal of Aerospace Power, 2024, 39(6):20210688 doi: 10.13224/j.cnki.jasp.20210688

Multi-objective optimization of impingement cooling of concave wall based on NSGA-Ⅱ algorithm

doi: 10.13224/j.cnki.jasp.20210688
  • Received Date: 2021-12-01
    Available Online: 2024-01-24
  • In order to obtain the influences of different impingement aperture (IA), impingement spacing of flow direction of impingement hole (IFD), spacing of span direction of impingement hole (ISD) coupling effect on impingement cooling characteristics and structural thermal stress of concave wall in reverse flow combustor, CFD calculation and FEA analysis were carried out. Opt LHD in DOE was selected to determine the sample points in the design space, and a high-precision RBFNN was constructed. Based on NSGA-Ⅱalgorithm, multi-objective optimization was carried out for comprehensive cooling efficiency, non-uniform coefficient of wall temperature distribution and maximum wall thermal stress. The results showed that comprehensive cooling efficiency, non-uniform coefficient of wall temperature distribution and maximum wall thermal stress decreased with the increase of ratio of IFD to ISD, ratio of IFD to IA and ratio of ISD to IA. Through multi-objective NSGA-Ⅱ algorithm, the value range of the three objective functions of the Pareto front of concave wall impingement cooling structure was obtained, i.e.: maximum wall thermal stress was not greater than 5 MPa, comprehensive cooling efficiency was not less than 0.66, and non-uniform coefficient of wall temperature distribution was not greater than 0.16. According to the combination of the optimal structure of concave wall impingement cooling: IA was equal to 0.94 mm, IFD was equal to 4.04 mm, and ISD was equal to 5.45 mm.

     

  • loading
  • [1]
    SHAN Yong,ZHANG Jingzhou,XIE Gongnan. Convective heat transfer for multiple rows of impinging air jets with small jet-to-jet spacing in a semi-confined channel[J]. International Journal of Heat and Mass Transfer,2015,86: 832-842. doi: 10.1016/j.ijheatmasstransfer.2015.03.073
    [2]
    韦宏,祖迎庆. 双层壁冷却结构中多排射流冲击冷却的换热和流阻特性[J]. 航空动力学报,2021,36(8): 1621-1632. WEI Hong,ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power,2021,36(8): 1621-1632. (in Chinese

    WEI Hong, ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power, 2021, 36(8): 1621-1632. (in Chinese)
    [3]
    关鹏,艾延廷,王志,等. 热冲击后气膜冷却叶片结构强度流固热耦合仿真[J]. 航空动力学报,2018,33(8): 1811-1820. GUAN Peng,AI Yanting,WANG Zhi,et al. Structural strength simulation of film cooling vane after heat shock by thermal/flow/structure coupling[J]. Journal of Aerospace Power,2018,33(8): 1811-1820. (in Chinese

    GUAN Peng, AI Yanting, WANG Zhi, et al. Structural strength simulation of film cooling vane after heat shock by thermal/flow/structure coupling[J]. Journal of Aerospace Power, 2018, 33(8): 1811-1820. (in Chinese)
    [4]
    KATTI V,PRABHU S V. Influence of spanwise pitch on local heat transfer distribution for in-line arrays of circular jets with spent air flow in two opposite directions[J]. Experimental Thermal and Fluid Science,2008,33(1): 84-95. doi: 10.1016/j.expthermflusci.2008.07.004
    [5]
    KATTI V,PRABHU S V. Influence of streamwise pitch on local heat transfer distribution for In-line arrays of circular jets with spent air flow in two opposite directions[J]. Experimental Heat Transfer,2009,22(4): 228-256. doi: 10.1080/08916150903098886
    [6]
    BAILEY J C,BUNKER R S. Local heat transfer and flow distributions for impinging jet arrays of dense and sparse extent[C]//Proceedings of ASME Turbo Expo 2002. Amsterdam,The Netherlad: Power for Land,Sea,and Air,2002: 855-864.
    [7]
    GOODRO M,PARK J,LIGRANI P,et al. Effect of hole spacing on jet array impingement heat transfer[C]//Proceedings of ASME Turbo Expo 2007. Montreal,Canada: Power for Land,Sea,and Air,2007: 963-976.
    [8]
    范俊生,叶纯杰,潘红良. 基于iSIGHT平台的倾斜冲击射流传热特性优化[J]. 计算机应用与软件,2012,29(4): 209-212. FAN Junsheng,YE Chunjie,PAN Hongliang. Isight platform based oblique impinging jet heat transfer feature optimization[J]. Computer Applications and Software,2012,29(4): 209-212. (in Chinese

    FAN Junsheng, YE Chunjie, PAN Hongliang. Isight platform based oblique impinging jet heat transfer feature optimization[J]. Computer Applications and Software, 2012, 29(4): 209-212. (in Chinese)
    [9]
    LAM P A K,PRAKASH K A. A numerical investigation and design optimization of impingement cooling system with an array of air jets[J]. International Journal of Heat and Mass Transfer,2017,108: 880-900. doi: 10.1016/j.ijheatmasstransfer.2016.12.017
    [10]
    LEE K D,CHOI D W,KIM K Y. Optimization of ejection angles of double-jet film-cooling holes using RBNN model[J]. International Journal of Thermal Sciences,2013,73: 69-78. doi: 10.1016/j.ijthermalsci.2013.05.015
    [11]
    杨帅. 基于源项法的涡轮叶片气膜冷却多目标优化[D]. 大连: 大连理工大学,2021. YANG Shuai. Multi-objective optimization of turbine blade film cooling based on source term method[D]. Dalian: Dalian University of Technology,2021. (in Chinese

    YANG Shuai. Multi-objective optimization of turbine blade film cooling based on source term method[D]. Dalian: Dalian University of Technology, 2021. (in Chinese)
    [12]
    HUANG Ying,ZHANG Jingzhou,WANG Chunhua,et al. Multi-objective optimization of laidback fan-shaped film cooling hole on Turbine Vane Suction Surface[J]. Heat and Mass Transfer,2019,55(4): 1181-1194. doi: 10.1007/s00231-018-2500-6
    [13]
    NEGI D S,PATTAMATTA A. Profile shape optimization in multi-jet impingement cooling of dimpled topologies for local heat transfer enhancement[J]. Heat and Mass Transfer,2015,51(4): 451-464. doi: 10.1007/s00231-014-1420-3
    [14]
    高建辉,温卫东,崔海涛. 火焰筒浮动瓦块的壁温-结构一体化优化[J]. 航空动力学报,2012,27(3): 588-594. GAO Jianhui,WEN Weidong,CUI Haitao. Optimal design for temperature and structure of the float-wall of flame tube[J]. Journal of Aerospace Power,2012,27(3): 588-594. (in Chinese

    GAO Jianhui, WEN Weidong, CUI Haitao. Optimal design for temperature and structure of the float-wall of flame tube[J]. Journal of Aerospace Power, 2012, 27(3): 588-594. (in Chinese)
    [15]
    CHI Zhongran,LIU Haiqing,ZANG Shusheng. Geometrical optimization of nonuniform impingement cooling structure with variable-diameter jet holes[J]. International Journal of Heat and Mass Transfer,2017,108: 549-560. doi: 10.1016/j.ijheatmasstransfer.2016.12.032
    [16]
    YANG L,MIN Z,PARBAT S N,et al. Optimization of hybrid-linked jet impingement cooling channels based on response surface methodology and genetic algorithm[R]. Charlotte,North Carolina,US: Turbomachinery Technical Conference and Exposition,2017.
    [17]
    MAVRIS D,ROTH B,MAVRIS D,et al. A methodology for robust design of impingement cooled HSCT combustor liners[D]. Georgia: Georgia Institute of Technology,1997.
    [18]
    KIM K M,MOON H,PARK J S,et al. Optimal design of impinging jets in an impingement/effusion cooling system[J]. Energy,2014,66: 839-848. doi: 10.1016/j.energy.2013.12.024
    [19]
    中国航空材料手册编辑委员会. 中国航空材料手册 第1卷 结构钢、不锈钢[M]. 北京: 中国标准出版社,2001. Editorial Committee of Chinese Aeronautical Materials Manual. Chinese Aeronautical Materials: Volume 1 Structural steel,stainless steel[M]. Beijing: China Standards Press,2001.

    Editorial Committee of Chinese Aeronautical Materials Manual. Chinese Aeronautical Materials: Volume 1 Structural steel, stainless steel[M]. Beijing: China Standards Press, 2001.
    [20]
    赵鸿华,宋双文,姜世界. 回流燃烧室小弯管冲击冷却特性试验研究[C]// 第三届国际航空发动机论坛,上海: 国际航空发动机论坛组委会,2021: 258-264. ZHAO Honghua,SONG Shuangwen,JIANG Shijie. Experimental Study on impingement cooling for conditional of concave wall[C]// The 3rd International Aero engine conference,Shanghai: Organizing Committee of International Aero Engine conference,2021: 258-264. (in Chinese

    ZHAO Honghua, SONG Shuangwen, JIANG Shijie. Experimental Study on impingement cooling for conditional of concave wall[C]// The 3rd International Aero engine conference, Shanghai: Organizing Committee of International Aero Engine conference, 2021: 258-264. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (33) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return