Volume 39 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
HU Ge, LI Jianzhong, ZHANG Jingzhou, et al. Flow field and soot emission characteristics of staged swirling combustor[J]. Journal of Aerospace Power, 2024, 39(6):20210695 doi: 10.13224/j.cnki.jasp.20210695
Citation: HU Ge, LI Jianzhong, ZHANG Jingzhou, et al. Flow field and soot emission characteristics of staged swirling combustor[J]. Journal of Aerospace Power, 2024, 39(6):20210695 doi: 10.13224/j.cnki.jasp.20210695

Flow field and soot emission characteristics of staged swirling combustor

doi: 10.13224/j.cnki.jasp.20210695
  • Received Date: 2021-12-06
    Available Online: 2024-01-16
  • In order to investigate the flow field and soot emission characteristics of staged combustor, the flow field characteristics were studied by experimental and numerical simulation methods, and the flow development process was revealed. The results of large eddy simulation (LES) showed that there was a 1820 Hz periodic velocity oscillation at the outlet of the pilot stage, but without obvious flow pulsation at the outlet of the main mode, and there was a precession vortex core (PVC) downstream the swirler. Numerical studies of soot emission characteristics showed that soot was abundant in primary recirculation zone. The soot concentration increased significantly with the increase of ratio of fuel and air in the lean combustion state. Along axial direction, the mass concentration of soot all showed a trend of decrease after rising first, and the peak corresponding to the axial position gradually moved back, ultimately resulting in a difference in soot emission from the combustor exit.

     

  • loading
  • [1]
    LIEUWEN T C,YANG V. Gas turbine emissions[M]. 2nd ed. Cambridge: Cambridge University Press. 2013.
    [2]
    LEFEBVRE A H,WHITELAW J H. Gas turbine combustion[J]. International Journal of Heat and Fluid Flow,1984,5(4): 228.
    [3]
    张弛,林宇震,徐华胜,等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报,2014,35(2): 332-350. ZHANG Chi,LIN Yuzhen,XU Huasheng,et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2): 332-350. (in Chinese

    ZHANG Chi, LIN Yuzhen, XU Huasheng, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 332-350. (in Chinese)
    [4]
    FU Yongqiang,CAI Jun,JENG S M,et al. Characteristics of the swirling flow generated by a counter-rotating swirler: AIAA 2007-5690 [R]. Reston,Virigina: AIAA,2007.
    [5]
    FU Yongqiang,JENG S M,TACINA R. Confinement effects on the swirling flow generated by a helical axial swirler: AIAA 2006-545 [R]. Reston,Virigina: AIAA,2006.
    [6]
    DEWANJI D,RAO A G,POURQUIE M,et al. Investigation of flow characteristics in lean direct injection combustors[J]. Journal of Propulsion and Power,2012,28(1): 181-196. doi: 10.2514/1.B34264
    [7]
    DEWANJI D,RAO A G. Spray combustion modeling in lean direct injection combustors: Part I single-element LDI[J]. Combustion Science and Technology,2015,187(4): 537-557. doi: 10.1080/00102202.2014.965810
    [8]
    PATEL N,MENON S. Simulation of spray-turbulence-flame interactions in a lean direct injection combustor[J]. Combustion and Flame,2008,153(1/2): 228-257.
    [9]
    PATEL N,KıRTAŞ M,SANKARAN V,et al. Simulation of spray combustion in a lean-direct injection combustor[J]. Proceedings of the Combustion Institute,2007,31(2): 2327-2334. doi: 10.1016/j.proci.2006.07.232
    [10]
    BROATCH A,CARRERES M,GARCÍA-TÍSCAR J,et al. Spectral analysis and modelling of the spray liquid injection in a lean direct injection (LDI) gas turbine combustor through Eulerian-Lagrangian large eddy simulations[J]. Aerospace Science and Technology,2021,118: 106992. doi: 10.1016/j.ast.2021.106992
    [11]
    WANG S,YANG V,HSIAO G,et al. Large-eddy simulations of gas-turbine swirl injector flow dynamics[J]. Journal of Fluid Mechanics,2007,583: 99-122. doi: 10.1017/S0022112007006155
    [12]
    DHANUKA S K,TEMME J E,DRISCOLL J. Unsteady aspects of lean premixed prevaporized gas turbine combustors: flame-flame interactions[J]. Journal of Propulsion & Power,2010,273: 631-641.
    [13]
    STURGESS G J,ZELINA J,SHOUSE D T,et al. Emissions reduction technologies for military gas turbine engines[J]. Journal of Propulsion and Power,2005,21(2): 193-217. doi: 10.2514/1.6528
    [14]
    DHANUKA S K,TEMME J E,DRISCOLL J F,et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute,2009,32(2): 2901-2908. doi: 10.1016/j.proci.2008.06.155
    [15]
    于涵,索建秦,朱鹏飞,等. 中心分级贫油直喷(LDI)燃烧室流动及污染排放特性研究[J]. 西北工业大学学报,2018,36(5): 816-823. YU Han,SUO Jianqin,ZHU Pengfei,et al. The characteristic of flow field and emissions of a concentric staged lean direct injection(LDI) combustor[J]. Journal of Northwestern Polytechnical University,2018,36(5): 816-823. (in Chinese doi: 10.3969/j.issn.1000-2758.2018.05.002

    YU Han, SUO Jianqin, ZHU Pengfei, et al. The characteristic of flow field and emissions of a concentric staged lean direct injection(LDI) combustor[J]. Journal of Northwestern Polytechnical University, 2018, 36(5): 816-823. (in Chinese) doi: 10.3969/j.issn.1000-2758.2018.05.002
    [16]
    于涵,索建秦,郑龙席. 带收敛出口的单元贫油直喷燃烧室冷态和热态流动特性研究[J]. 推进技术,2019,40(3): 608-618. YU Han,SUO Jianqin,ZHENG Longxi. Investigation of non-reaction and reaction flow characteristic of single element lean direct injection combustor with convergent outlet[J]. Journal of Propulsion Technology,2019,40(3): 608-618. (in Chinese

    YU Han, SUO Jianqin, ZHENG Longxi. Investigation of non-reaction and reaction flow characteristic of single element lean direct injection combustor with convergent outlet[J]. Journal of Propulsion Technology, 2019, 40(3): 608-618. (in Chinese)
    [17]
    李乐,索建秦,于涵,等. 中心分级多点直喷燃烧室冷态流动特性研究[J]. 推进技术,2021,42(6): 1339-1350. LI Le,SUO Jianqin,YU Han,et al. Non-reaction flow characteristic of concentric staged multi-point direct injection combustor[J]. Journal of Propulsion Technology,2021,42(6): 1339-1350. (in Chinese

    LI Le, SUO Jianqin, YU Han, et al. Non-reaction flow characteristic of concentric staged multi-point direct injection combustor[J]. Journal of Propulsion Technology, 2021, 42(6): 1339-1350. (in Chinese)
    [18]
    CHEN Jian,LI Jianzhong,YUAN Li,et al. Flow and flame characteristics of a RP-3 fuelled high temperature rise combustor based on RQL[J]. Fuel,2019,235: 1159-1171. doi: 10.1016/j.fuel.2018.08.115
    [19]
    KUNDU K,PENKO P,VANOVERBEKE T. A practical kinetic mechanism for computing combustion in gas turbine engines: AIAA 1999-2218 [R]. Reston,Virigina: AIAA,1999.
    [20]
    BROOKES S,MOSS J. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames[J]. Combustion and Flame,1999,116(4): 486-503. doi: 10.1016/S0010-2180(98)00056-X
    [21]
    秦皓,丁志磊,李海涛,等. LESS燃烧室非定常旋流流动[J]. 航空动力学报,2015,30(7): 1566-1575. QIN Hao,DING Zhilei,LI Haitao,et al. Unsteady swirling flow in low emissions stirred swirls combustor[J]. Journal of Aerospace Power,2015,30(7): 1566-1575. (in Chinese

    QIN Hao, DING Zhilei, LI Haitao, et al. Unsteady swirling flow in low emissions stirred swirls combustor[J]. Journal of Aerospace Power, 2015, 30(7): 1566-1575. (in Chinese)
    [22]
    杨思恒,王建臣,张弛,等. 三头部中心分级燃烧室出口温度分布研究[J]. 工程热物理学报,2021,42(10): 2737-2748. YANG Siheng,WANG Jianchen,ZHANG Chi,et al. Investigation on outlet temperature distribution of a three-sector centrally staged combustor[J]. Journal of Engineering Thermophysics,2021,42(10): 2737-2748. (in Chinese

    YANG Siheng, WANG Jianchen, ZHANG Chi, et al. Investigation on outlet temperature distribution of a three-sector centrally staged combustor[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2737-2748. (in Chinese)
    [23]
    BASHIRNEZHAD K,MOGHIMAN M,ZAHMATKESH I. Studies on soot formation and combustion in turbulent spray flames: modeling and experimental measurement[J]. Iranian Journal of Chemistry & Chemical Engineering-International English Edition,2007,26: 45-54.
    [24]
    PENKO P,KUNDU K,SIOW Y,et al. A kinetic mechanism for calculation of pollutant species in Jet-a combustion: AIAA 2000-3035[R]. Reston, Virigina: AIAA, 2000.
    [25]
    李宇航,张弛,王建臣,等. 预燃级对TeLESS Ⅱ燃烧室冒烟排放的影响[J]. 航空动力学报,2018,33(10): 2424-2433. LI Yuhang,ZHANG Chi,WANG Jianchen,et al. Effect of pilot strutures on smoke emissions in the TeLESS Ⅱ combustor[J]. Journal of Aerospace Power,2018,33(10): 2424-2433. (in Chinese

    LI Yuhang, ZHANG Chi, WANG Jianchen, et al. Effect of pilot strutures on smoke emissions in the TeLESS Ⅱ combustor[J]. Journal of Aerospace Power, 2018, 33(10): 2424-2433. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (35) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return