Volume 39 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
HE Ye, LI Junwei, TIAN Zhongliang, et al. Effects of acceleration overload on combustion characteristics of HTPB/AP/Al propellant[J]. Journal of Aerospace Power, 2024, 39(8):20220067 doi: 10.13224/j.cnki.jasp.20220067
Citation: HE Ye, LI Junwei, TIAN Zhongliang, et al. Effects of acceleration overload on combustion characteristics of HTPB/AP/Al propellant[J]. Journal of Aerospace Power, 2024, 39(8):20220067 doi: 10.13224/j.cnki.jasp.20220067

Effects of acceleration overload on combustion characteristics of HTPB/AP/Al propellant

doi: 10.13224/j.cnki.jasp.20220067
  • Received Date: 2022-02-13
    Available Online: 2024-03-29
  • In order to study the effect of acceleration field on the combustion characteristics of HTPB/AP/Al propellant, an overload test rocket with both burning rate measurement and condensate product collection functions was designed. The effects of different overload magnitudes (−50g to +50g) on combustion chamber pressure, mean combustion velocity, transient combustion velocity, condensed phase products and rocket plume were investigated by using the overload test method. The research showed that: (1) the reverse overload had little effect on the pressure of the combustion chamber and the burning rate of the propellant. With the increase of forward overload, the combustion chamber pressure and propellant burning rate increased. (2) Compared with that without overload, the combustion chamber pressure increased by 35.8% under +10g overload, 69.9% under +30g overload, and 76.8% under +50g overload, and there was a “hump phenomenon” under +30g overload and +50g overload. (3) Compared with 0g, the burning rate increased by 21% under +10g overload, 40% under +30g overload, and 44% under +50g overload. At +30g and +50g overload, the transient combustion velocity increased and then decreased, the maximum value increased with the increasing overload, the time to reach the maximum value decreased with the increasing overload. (4) The content of carbon and elemental aluminum in the medicine cup decreased by 100% and 82.28%, respectively, with the increase of positive overload, and the alumina increased by 402.17% with the increase of positive overload. There was almost no carbon and aluminum in the collection device. And the particle size of the condensed-phase product in the collection device decreased with the increase of positive overload. (5) Acceleration field had a significant effect on the color of rocket plume; under reverse overload, the engine plume flame appeared yellow accompanied by bright sparks; under forward overload, it appeared purple.

     

  • loading
  • [1]
    张如洲. 加速度对固体火箭发动机性能的影响[J]. 推进技术,1983,4(1): 55-69. ZHANG Ruzhou. Effect of acceleration on performance of solid rocket motor[J]. Journal of Propulsion Technology,1983,4(1): 55-69. (in Chinese

    ZHANG Ruzhou. Effect of acceleration on performance of solid rocket motor[J]. Journal of Propulsion Technology, 1983, 4(1): 55-69. (in Chinese)
    [2]
    GREATRIX D R,GOTTLIEB J J. Normal acceleration model for composite-propellant combustion[J]. Transactions of the Canadian Society for Mechanical Engineering,1988,12(4): 205-211. doi: 10.1139/tcsme-1988-0029
    [3]
    GREATRIX D R. Parametric analysis of combined acceleration effects on solid-propellant combustion[J]. Canadian Aeronautics and Space Journal,1994,40: 68-73.
    [4]
    GREATRIX D R. Acceleration-based combustion augmentation modelling for noncylindrical grain solid rocket motors: AIAA 1995-2876 [R]. Reston,Virigina: AIAA,1995.
    [5]
    GREATRIX D R. Internal ballistic model for spinning star-grain motors[J]. Journal of Propulsion and Power,1996,12(3): 612-614. doi: 10.2514/3.24077
    [6]
    COWLES D,NETZER D. The effect of acceleration on composite propellant combustion[J]. Combustion Science and Technology,1971,3(5): 215-229. doi: 10.1080/00102207108952289
    [7]
    WILLOUGHBY P G,CROWE C T,BAKER K L. A photographic and analytic study of composite propellant combustionin an acceleration field[J]. Journal of Spacecraft and Rockets,1971,8(4): 310-317. doi: 10.2514/3.30271
    [8]
    CROWE C T. A unified model for the acceleration-produced burning rate augmentation of metalized solid propellants[J]. Combustion Science and Technology,1972,5(1): 55-60. doi: 10.1080/00102207208952503
    [9]
    NORTHAM G B. Effects of the acceleration vector on transient burning rate of an aluminized solid propellant[J]. Journal of Spacecraft and Rockets,1971,8(11): 1133-1137. doi: 10.2514/3.30357
    [10]
    ISHII S,NIIOKA T,MITANI T,et al. Combustion of composite propellants in acceleration field[J]. Technical Report of National Aerospace Laboratory,1973,354(9): 109-112.
    [11]
    KRIER H,SURZHIKOV S,GLICK R. Prediction of the effects of acceleration on the burning of AP/HTPB solid propellants: AIAA 2001-343 [R]. Reston,Virigina: AIAA,2001.
    [12]
    曹泰岳. 含金属的固体推进剂在加速度场中燃烧时燃速敏感性的预示[J]. 宇航学报,1988,9(1): 74-81. CAO Taiyue. A prediction of burning rate sensativity of metalized solid propellant in an acceleration field[J]. Journal of Astronautics,1988,9(1): 74-81. (in Chinese

    CAO Taiyue. A prediction of burning rate sensativity of metalized solid propellant in an acceleration field[J]. Journal of Astronautics, 1988, 9(1): 74-81. (in Chinese)
    [13]
    曹泰岳. 含金属固体推进剂在加速度场中燃烧时瞬态燃烧特性的预示[J]. 推进技术,1987,8(5): 9-13,76. CAO Taiyue. Prediction of transient combustion characteristics for metallized solid propellant in an accelerated field[J]. Journal of Propulsion Technology,1987,8(5): 9-13,76. (in Chinese

    CAO Taiyue. Prediction of transient combustion characteristics for metallized solid propellant in an accelerated field[J]. Journal of Propulsion Technology, 1987, 8(5): 9-13, 76. (in Chinese)
    [14]
    万章吉,商晨燕,曹泰岳. 加速度对固体发动机内弹道性能影响的实验研究[J]. 固体火箭技术,1991,14(3): 24-30. WAN Zhangji,SHANG Chenyan,CAO Taiyue. Experimental study on the influence of acceleration on interior ballistic performance of solid rocket motor[J]. Journal of Solid Rocket Technology,1991,14(3): 24-30. (in Chinese

    WAN Zhangji, SHANG Chenyan, CAO Taiyue. Experimental study on the influence of acceleration on interior ballistic performance of solid rocket motor[J]. Journal of Solid Rocket Technology, 1991, 14(3): 24-30. (in Chinese)
    [15]
    万章吉,商晨燕,曹泰岳. 关于加速度场对固体发动机内弹道性能影响的实验研究(之二)[J]. 弹箭与制导学报,1993,13(3): 18-26,33. WAN Zhangji,SHANG Chenyan,CAO Taiyue. Experimental study on the influence of acceleration field on the interior ballistic performance of solid motor (Ⅱ)[J]. Journal of Projectiles Rockets Missiles and Guidance,1993,13(3): 18-26,33. (in Chinese

    WAN Zhangji, SHANG Chenyan, CAO Taiyue. Experimental study on the influence of acceleration field on the interior ballistic performance of solid motor (Ⅱ)[J]. Journal of Projectiles Rockets Missiles and Guidance, 1993, 13(3): 18-26, 33. (in Chinese)
    [16]
    张为华,曹泰岳,陈雅琴. 旋转发动机内弹道计算初探[J]. 固体火箭技术,1992,15(2): 1-5. ZHANG Weihua,CAO Taiyue,CHEN Yaqin. Preliminary investigation of internal ballistic calculation for spinning solid rocket motor[J]. Journal of Solid Rocket Technology,1992,15(2): 1-5. (in Chinese

    ZHANG Weihua, CAO Taiyue, CHEN Yaqin. Preliminary investigation of internal ballistic calculation for spinning solid rocket motor[J]. Journal of Solid Rocket Technology, 1992, 15(2): 1-5. (in Chinese)
    [17]
    张为华,曹泰岳,万章吉. 固体火箭发动机旋转对燃速的影响[J]. 航空动力学报,1994,9(1): 67-70. ZHANG Weihua,CAO Taiyue,WAN Zhangji. Effect of solid rocket motor rotation on burning rate[J]. Journal of Aerospace Power,1994,9(1): 67-70. (in Chinese

    ZHANG Weihua, CAO Taiyue, WAN Zhangji. Effect of solid rocket motor rotation on burning rate[J]. Journal of Aerospace Power, 1994, 9(1): 67-70. (in Chinese)
    [18]
    张为华,曹泰岳,郭印诚. 旋转固体火箭发动机一维内弹道计算[J]. 推进技术,1994,15(3): 28-32. ZHANG Weihua,CAO Taiyue,GUO Yincheng. One-dimensional interior ballistic calculation of rotating solid rocket motor[J]. Journal of Propulsion Technology,1994,15(3): 28-32. (in Chinese

    ZHANG Weihua, CAO Taiyue, GUO Yincheng. One-dimensional interior ballistic calculation of rotating solid rocket motor[J]. Journal of Propulsion Technology, 1994, 15(3): 28-32. (in Chinese)
    [19]
    曹泰岳,张为华,万章吉,等. 旋转固体火箭发动机内弹道理论与实验研究[J]. 宇航学报,1997,18(1): 1-7. CAO Taiyue,ZHANG Weihua,WAN Zhangji,et al. Theoretical and experimental study on interior ballistics of rotating solid rocket motor[J]. Journal of Astronautics,1997,18(1): 1-7. (in Chinese

    CAO Taiyue, ZHANG Weihua, WAN Zhangji, et al. Theoretical and experimental study on interior ballistics of rotating solid rocket motor[J]. Journal of Astronautics, 1997, 18(1): 1-7. (in Chinese)
    [20]
    张如洲,李葆江,郑晓平,等. 含铝复合推进剂在加速度场中燃烧的试验研究[J]. 推进技术,1989,10(4): 46-49,82. ZHANG Ruzhou,LI Baojiang,ZHENG Xiaoping,et al. An experimental investigation of the combustion of aluminized composite solid propellants in acceleration fields[J]. Journal of Propulsion Technology,1989,10(4): 46-49,82. (in Chinese

    ZHANG Ruzhou, LI Baojiang, ZHENG Xiaoping, et al. An experimental investigation of the combustion of aluminized composite solid propellants in acceleration fields[J]. Journal of Propulsion Technology, 1989, 10(4): 46-49, 82. (in Chinese)
    [21]
    张如洲,李葆江,郑晓平. 加速度对丁羟推进剂燃速的影响[J]. 兵工学报,1988,9(2): 17-23. ZHANG Ruzhou,LI Baojiang,ZHENG Xiaoping. Effect of acceleration on the burning rate of htpb composite aluminized solid propellants[J]. Acta Armamentarii,1988,9(2): 17-23. (in Chinese

    ZHANG Ruzhou, LI Baojiang, ZHENG Xiaoping. Effect of acceleration on the burning rate of htpb composite aluminized solid propellants[J]. Acta Armamentarii, 1988, 9(2): 17-23. (in Chinese)
    [22]
    张如洲,李葆江,郑晓平,等. 加速度对含铝复合推进剂瞬时燃速的影响[J]. 推进技术,1991,12(1): 35-41. ZHANG Ruzhou,LI Baojiang,ZHENG Xiaoping,et al. Effect of acceleration vector on transient burning rate of aluminized composite solid propellants[J]. Journal of Propulsion Technology,1991,12(1): 35-41. (in Chinese

    ZHANG Ruzhou, LI Baojiang, ZHENG Xiaoping, et al. Effect of acceleration vector on transient burning rate of aluminized composite solid propellants[J]. Journal of Propulsion Technology, 1991, 12(1): 35-41. (in Chinese)
    [23]
    张如洲,李葆江,郑晓平. 加速度对含铝复合推进剂燃烧特性的影响[J]. 推进技术,1995,16(2): 54-60. ZHANG Ruzhou,LI Baojiang,ZHENG Xiaoping. Effect of acceleration on combustion characteristics of aluminum-containing composite propellant[J]. Journal of Propulsion Technology,1995,16(2): 54-60. (in Chinese

    ZHANG Ruzhou, LI Baojiang, ZHENG Xiaoping. Effect of acceleration on combustion characteristics of aluminum-containing composite propellant[J]. Journal of Propulsion Technology, 1995, 16(2): 54-60. (in Chinese)
    [24]
    张如洲,李葆江,方继明,等. 在加速场下含铝复合推进剂燃烧中粒子动力学研究[J]. 推进技术,1998,19(3): 82-85. ZHANG Ruzhou,LI Baojiang,FANG Jiming,et al. Study on particle dynamics in combustion of aluminum-containing composite propellant under accelerated field[J]. Journal of Propulsion Technology,1998,19(3): 82-85. (in Chinese

    ZHANG Ruzhou, LI Baojiang, FANG Jiming, et al. Study on particle dynamics in combustion of aluminum-containing composite propellant under accelerated field[J]. Journal of Propulsion Technology, 1998, 19(3): 82-85. (in Chinese)
    [25]
    张翔宇,高波,甘晓松,等. 飞行过载对固体火箭发动机不稳定燃烧的影响[J]. 宇航学报,2019,40(8): 972-976. ZHANG Xiangyu,GAO Bo,GAN Xiaosong,et al. Impacts of flight acceleration on combustion instability of solid rocket motor[J]. Journal of Astronautics,2019,40(8): 972-976. (in Chinese

    ZHANG Xiangyu, GAO Bo, GAN Xiaosong, et al. Impacts of flight acceleration on combustion instability of solid rocket motor[J]. Journal of Astronautics, 2019, 40(8): 972-976. (in Chinese)
    [26]
    田维平,许团委,王健儒. 过载下燃烧室粒子特性与绝热层烧蚀研究进展[J]. 固体火箭技术,2015,38(1): 30-36,66. TIAN Weiping,XU Tuanwei,WANG Jianru. Progress on condensed-phase particle characteristic and insulation ablation in SRM chamber with flight overload[J]. Journal of Solid Rocket Technology,2015,38(1): 30-36,66. (in Chinese

    TIAN Weiping, XU Tuanwei, WANG Jianru. Progress on condensed-phase particle characteristic and insulation ablation in SRM chamber with flight overload[J]. Journal of Solid Rocket Technology, 2015, 38(1): 30-36, 66. (in Chinese)
    [27]
    刘长猛,余贞勇,李侃,等. 飞行过载下燃烧室凝相粒子沉积特征数值研究[J]. 固体火箭技术,2017,40(3): 302-306. LIU Changmeng,YU Zhenyong,LI Kan,et al. Simulation research for accretion characteristic of condensed phase particle in SRM chamber with flight overload[J]. Journal of Solid Rocket Technology,2017,40(3): 302-306. (in Chinese

    LIU Changmeng, YU Zhenyong, LI Kan, et al. Simulation research for accretion characteristic of condensed phase particle in SRM chamber with flight overload[J]. Journal of Solid Rocket Technology, 2017, 40(3): 302-306. (in Chinese)
    [28]
    白彦军,许团委,刘洋. 模拟过载条件下燃烧室凝相颗粒形态参数试验研究[J]. 固体火箭技术,2017,40(4): 409-413,419. BAI Yanjun,XU Tuanwei,LI Yang. Parameters of combustor condensed phase particles form analysis for overload simulation test[J]. Journal of Solid Rocket Technology,2017,40(4): 409-413,419. (in Chinese

    BAI Yanjun, XU Tuanwei, LI Yang. Parameters of combustor condensed phase particles form analysis for overload simulation test[J]. Journal of Solid Rocket Technology, 2017, 40(4): 409-413, 419. (in Chinese)
    [29]
    唐金兰,刘佩进. 固体火箭发动机原理[M]. 北京: 国防工业出版社,2013. TANG Jinlan,LIU Peijin. Principle of solid rocket engine[M]. Beijing: National Defense Industry Press,2013. (in Chinese

    TANG Jinlan, LIU Peijin. Principle of solid rocket engine[M]. Beijing: National Defense Industry Press, 2013. (in Chinese)
    [30]
    敖文,刘佩进. 固体推进剂铝团聚模型[J]. 航空动力学报,2017,32(5): 1224-1233. AO Wen,LIU Peijin. Models of aluminum agglomeration in solid propellants[J]. Journal of Aerospace Power,2017,32(5): 1224-1233. (in Chinese

    AO Wen, LIU Peijin. Models of aluminum agglomeration in solid propellants[J]. Journal of Aerospace Power, 2017, 32(5): 1224-1233. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (34) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return