Volume 39 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
SHEN Wenjie, WANG Suofang, ZHANG Xindan. Research on the vortex breakdown and pressure loss characteristics in the cavity with anti-swirling waist circular drum hole[J]. Journal of Aerospace Power, 2024, 39(8):20220075 doi: 10.13224/j.cnki.jasp.20220075
Citation: SHEN Wenjie, WANG Suofang, ZHANG Xindan. Research on the vortex breakdown and pressure loss characteristics in the cavity with anti-swirling waist circular drum hole[J]. Journal of Aerospace Power, 2024, 39(8):20220075 doi: 10.13224/j.cnki.jasp.20220075

Research on the vortex breakdown and pressure loss characteristics in the cavity with anti-swirling waist circular drum hole

doi: 10.13224/j.cnki.jasp.20220075
  • Received Date: 2022-02-21
    Available Online: 2024-03-27
  • To reduce the pressure loss in a compressor disk cavity, an anti-swirling waist circular drum hole structure was designed. Large Eddy simulation (LES) and the RNG k-ε model were used to investigate the vortex evolution and pressure loss characteristics in the cavity, respectively, revealing the vortex breakdown mechanism and drag reduction mechanism of the anti-swirling waist circular drum hole. The results showed that the anti-swirling waist circular drum hole can reduce the pressure loss in the cavity. The high-speed vortex was intensified rapidly in the low region of the cavity with waist circular drum, and the vortex scale increased rapidly, resulting in the rapid increase of pressure loss coefficient with the radial height decrease. Compared with the waist circular drum hole, the anti-swirling waist circular drum hole can effectively restrain the vortex scale increase and reduce the pressure loss in the cavity by 15.6%. With simple structure and linear airflow characteristic, the anti-swirling waist circular drum hole has high engineering application value.

     

  • loading
  • [1]
    夏子龙,王锁芳,麻丽春,等. 压气机引气系统典型减涡器减阻特性对比分析[J]. 推进技术,2021,42(1): 114-122. XIA Zilong,WANG Suofang,MA Lichun,et al. Comparative analysis of flow resistance reduction characteristics of typical vortex reducers in compressor bleed air system[J]. Journal of Propulsion Technology,2021,42(1): 114-122. (in Chinese

    XIA Zilong, WANG Suofang, MA Lichun, et al. Comparative analysis of flow resistance reduction characteristics of typical vortex reducers in compressor bleed air system[J]. Journal of Propulsion Technology, 2021, 42(1): 114-122. (in Chinese)
    [2]
    FARTHING P R,CHEW J W,OWEN J M. The use of de-swirl nozzles to reduce the pressure drop in a rotating cavity with a radial inflow[J]. Journal of Turbomachinery,1989,113(1): 106-114.
    [3]
    FARTHING P R,OWEN J M. De-swirled radial inflow in a rotating cavity[J]. International Journal of Heat and Fluid Flow,1991,12: 63-70. doi: 10.1016/0142-727X(91)90009-K
    [4]
    NEGULESCU D,PFITZNER M. Secondary air systems in aeroengines employing vortex reducers[R]. New Orieans: Proceeding of ASME Turbo Expo,2001.
    [5]
    WEI Song,YAN Jiaxi,MAO Junkui,et al. A mathematical model for predicting the pressure drop in a rotating cavity with a tubed vortex reducer[J]. Engineering Applications of Computational Fluid Mechanics,2019,13(1): 664-682. doi: 10.1080/19942060.2019.1633411
    [6]
    LIANG Zhirong,LUO Xiang,FENG Ye,et al. Experimental investigation of pressure losses in a co-rotating cavity with radial inflow employing tubed vortex reducers with varied nozzles[J]. Experimental Thermal and Fluid Science,2015,66: 304-315. doi: 10.1016/j.expthermflusci.2015.03.008
    [7]
    侯晓亭,王锁芳,张凯. 翅片安装高度对共转盘腔减阻特性影响的数值研究[J]. 推进技术,2020,41(7): 1457-1463. HOU Xiaoting,WANG Suofang,ZHANG Kai. Numerical investigation on effects of installation height of fins on drag reduction performance of co-rotating cavity[J]. Journal of Propulsion Technology,2020,41(7): 1457-1463. (in Chinese

    HOU Xiaoting, WANG Suofang, ZHANG Kai. Numerical investigation on effects of installation height of fins on drag reduction performance of co-rotating cavity[J]. Journal of Propulsion Technology, 2020, 41(7): 1457-1463. (in Chinese)
    [8]
    侯晓亭,王锁芳,张凯,等. 新型翅片式减涡器减阻特性数值研究[J]. 推进技术,2020,41(9): 2059-2069. HOU Xiaoting,WANG Suofang,ZHANG Kai,et al. Numerical investigation on resistance reduction characteristics of new finned vortex reducer device[J]. Journal of Propulsion Technology,2020,41(9): 2059-2069. (in Chinese

    HOU Xiaoting, WANG Suofang, ZHANG Kai, et al. Numerical investigation on resistance reduction characteristics of new finned vortex reducer device[J]. Journal of Propulsion Technology, 2020, 41(9): 2059-2069. (in Chinese)
    [9]
    吴丽军,陈潇,邓双国,等. 减涡器流阻特性计算分析[J]. 燃气轮机技术,2014,27(3): 37-43. WU Lijun,CHEN Xiao,DENG Shuangguo,et al. Flow resistance characteristics of vortex reducer computation and analysis[J]. Gas Turbine Technology,2014,27(3): 37-43. (in Chinese doi: 10.3969/j.issn.1009-2889.2014.03.008

    WU Lijun, CHEN Xiao, DENG Shuangguo, et al. Flow resistance characteristics of vortex reducer computation and analysis[J]. Gas Turbine Technology, 2014, 27(3): 37-43. (in Chinese) doi: 10.3969/j.issn.1009-2889.2014.03.008
    [10]
    蔡超凡,罗翔,孙平平,等. 管式减涡器压力损失特性数值研究[J]. 燃气涡轮试验与研究,2019,32(2): 49-55. CAI Chaofan,LUO Xiang,SUN Pingping,et al. Numerical study of pressure drop in tubular vortex reducer[J]. Gas Turbine Experiment and Research,2019,32(2): 49-55. (in Chinese doi: 10.3969/j.issn.1672-2620.2019.02.009

    CAI Chaofan, LUO Xiang, SUN Pingping, et al. Numerical study of pressure drop in tubular vortex reducer[J]. Gas Turbine Experiment and Research, 2019, 32(2): 49-55. (in Chinese) doi: 10.3969/j.issn.1672-2620.2019.02.009
    [11]
    OWEN J M,PINCOMBE J R,ROGERS R H. Source-sink flow inside a rotating cylindrical cavity[J]. Journal of Fluid Mechanics,1985,155: 233-265. doi: 10.1017/S0022112085001793
    [12]
    FIROUZIAN M,OWEN J M,PINCOMBE J R,et al. Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid[J]. International Journal of Heat and Fluid Flow,1986,7(1): 21-27. doi: 10.1016/0142-727X(86)90037-8
    [13]
    SUN Zixiang,AMIRANTE D,CHEW J W,et al. Coupled aerothermal modeling of a rotating cavity with radial inflow[J]. Journal of Engineering for Gas Turbines and Power,2016,138(3): 032505. doi: 10.1115/1.4031387
    [14]
    蒋亮亮. 某导流板式减涡器及涡轮集气腔流动特性研究[D]. 南京: 南京航空航天大学,2014. JIANG Liangliang. Research on flow characteristics of turbineplenum chamber and the vortex-reducer with bafflers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2014. (in Chinese

    JIANG Liangliang. Research on flow characteristics of turbineplenum chamber and the vortex-reducer with bafflers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)
    [15]
    夏子龙,王锁芳,侯晓亭. 导管长度对管式减涡器流阻与温降特性影响[J]. 航空动力学报,2020,35(1): 88-96. XIA Zilong,WANG Suofang,HOU Xiaoting. Influence of tube length on flow resistance and temperature reduction characteristics of tubed vortex reducer[J]. Journal of Aerospace Power,2020,35(1): 88-96. (in Chinese

    XIA Zilong, WANG Suofang, HOU Xiaoting. Influence of tube length on flow resistance and temperature reduction characteristics of tubed vortex reducer[J]. Journal of Aerospace Power, 2020, 35(1): 88-96. (in Chinese)
    [16]
    ONORI M,AMIRANTE D,HILLS N J,et al. LES validation for a rotating cylindrical cavity with radial inflow: GT2016-56393[R]. Seoul,South Korea: ASME,2016.
    [17]
    KUMAR B G V,CHEW J W,HILLS N J. Rotating flow and heat transfer in cylindrical cavities with radial inflow: GT2012-68770[R]. Copenhagen,Denmark: ASME,2012.
    [18]
    侯晓亭,王锁芳,张凯. 管-隔板复合式减涡器流阻特性[J]. 航空动力学报,2020,35(1): 106-113. HOU Xiaoting,WANG Suofang,ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power,2020,35(1): 106-113. (in Chinese

    HOU Xiaoting, WANG Suofang, ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power, 2020, 35(1): 106-113. (in Chinese)
    [19]
    田冉冉,毛军逵,范俊,等. 反旋进气混合式减涡结构流动特性数值计算[J]. 航空动力学报,2019,34(8): 1677-1687. TIAN Ranran,MAO Junkui,FAN Jun,et al. Numerical calculation of flow characteristics of hybrid vortex reduce structure combing de-swirl inlet[J]. Journal of Aerospace Power,2019,34(8): 1677-1687. (in Chinese

    TIAN Ranran, MAO Junkui, FAN Jun, et al. Numerical calculation of flow characteristics of hybrid vortex reduce structure combing de-swirl inlet[J]. Journal of Aerospace Power, 2019, 34(8): 1677-1687. (in Chinese)
    [20]
    GEURTS B J,FRÖHLICH J. A framework for predicting accuracy limitations in large-eddy simulation[J]. Physics of Fluids,2002,14(6): 41-44. doi: 10.1063/1.1480830
    [21]
    POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press,2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (13) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return