Volume 39 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
YIN Chunwu, GAN Ting, XU Lin. Adaptive attitude control with physical constraint and time-varying rotational inertia[J]. Journal of Aerospace Power, 2024, 39(1):20220124 doi: 10.13224/j.cnki.jasp.20220124
Citation: YIN Chunwu, GAN Ting, XU Lin. Adaptive attitude control with physical constraint and time-varying rotational inertia[J]. Journal of Aerospace Power, 2024, 39(1):20220124 doi: 10.13224/j.cnki.jasp.20220124

Adaptive attitude control with physical constraint and time-varying rotational inertia

doi: 10.13224/j.cnki.jasp.20220124
  • Received Date: 2022-03-11
    Available Online: 2023-08-09
  • A robust adaptive attitude controller based on dual-loop design method was proposed for controlling rigid-body attitude in the presence of time-varying rotational inertia, bounded angular velocity and control torque. To satisfy the constraint of angular velocity, the bounded virtual angular velocity was designed to ensure the kinematical equation converge rapidly, and based on barrier Lyapunov function, a variable gain adaptive attitude controller was designed to guarantee the bounded errors between real and virtual angular velocities, in which, recursive adaptive algorithm was constructed to estimate the time-varying rotational inertia and its differentiation. The results showed that the control strategy can make the attitude of the non-cooperative target spacecraft converge exponentially to the desired trajectory, and the convergence trajectory was not affected by external interference and strong interference at the moment of capture. In the entire control process, the angular velocity of the spacecraft was less than 0.4 rad/s and the control torque was less than 10 N·m, thus meeting the physical limitations of the spacecraft.

     

  • loading
  • [1]
    雷灏,陈柏屹,刘燕斌,等. 推力协同的大柔性飞行器纵向姿态控制[J]. 航空动力学报,2021,36(10): 2207-2217. doi: 10.13224/j.cnki.jasp.20200457

    LEI Hao,CHEN Boyi,LIU Yanbin,et al. Longitudinal attitude control for very flexible aircraft with thrust cooperation[J]. Journal of Aerospace Power,2021,36(10): 2207-2217. (in Chinese) doi: 10.13224/j.cnki.jasp.20200457
    [2]
    林子杰,陆国平,吕旺,等. 基于事件驱动的航天器姿态自适应跟踪控制[J]. 航天控制,2021,39(1): 32-39. doi: 10.3969/j.issn.1006-3242.2021.01.006

    LIN Zijie,LU Guoping,LÜ Wang,et al. Adaptive event-triggered control for spacecraft attitude tracking[J]. Aerospace Control,2021,39(1): 32-39. (in Chinese) doi: 10.3969/j.issn.1006-3242.2021.01.006
    [3]
    LEE K W,SINGH S N. Quaternion-based adaptive attitude control of asteroid-orbiting spacecraft via immersion and invariance[J]. Acta Astronautica,2020,167: 164-180. doi: 10.1016/j.actaastro.2019.10.031
    [4]
    周湛杰,王新生,王岩. 基于模糊自适应算法的航天器姿态控制[J]. 电机与控制学报,2019,23(2): 123-128. doi: 10.15938/j.emc.2019.02.016

    ZHOU Zhanjie,WANG Xinsheng,WANG Yan. Spacecraft attitude control based on fuzzy adaptive algorithm[J]. Electric Machines and Control,2019,23(2): 123-128. (in Chinese) doi: 10.15938/j.emc.2019.02.016
    [5]
    ZOU Anmin,DEV KUMAR K,HOU Zengguang. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks[J]. IEEE Transactions on Neural Networks,2010,21(9): 1457-1471. doi: 10.1109/TNN.2010.2050333
    [6]
    殷春武,佟威,何波. 基于极限学习机的有限时间自适应姿态控制[J]. 航天控制,2018,36(5): 30-36. doi: 10.16804/j.cnki.issn1006-3242.2018.05.006

    YIN Chunwu,TONG Wei,HE Bo. Extreme learning machine-based finite-time adaptive attitude control[J]. Aerospace Control,2018,36(5): 30-36. (in Chinese) doi: 10.16804/j.cnki.issn1006-3242.2018.05.006
    [7]
    HU Qinglei,XIAO Li,WANG Chenliang. Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties[J]. Chinese Journal of Aeronautics,2019,32(3): 674-687. doi: 10.1016/j.cja.2018.12.015
    [8]
    YEH F K. Sliding-mode adaptive attitude controller design for spacecrafts with thrusters[J]. IET Control Theory and Applications,2010,4(7): 1254-1264. doi: 10.1049/iet-cta.2009.0026
    [9]
    THAKUR D,SRIKANT S,AKELLA M R. Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters[J]. Journal of Guidance, Control and Dynamics,2015,38(1): 41-52. doi: 10.2514/1.G000457
    [10]
    FORBES J R. Attitude control with active actuator saturation prevention[J]. Acta Astronautica,2015,107: 187-195. doi: 10.1016/j.actaastro.2014.10.006
    [11]
    ZHANG Chao,MA Guangfu,SUN Yanchao,et al. Observer-based prescribed performance attitude control for flexible spacecraft with actuator saturation[J]. ISA Transactions,2019,89: 84-95. doi: 10.1016/j.isatra.2018.12.027
    [12]
    YU Bo,DU Haibo,DING Lijian,et al. Neural network-based robust finite-time attitude stabilization for rigid spacecraft under angular velocity constraint[J]. Neural Computing and Applications,2022,34(7): 5107-5117. doi: 10.1007/s00521-021-06056-w
    [13]
    HU Qinglei,LI Bo,ZHANG Youmin. Robust attitude control design for spacecraft under assigned velocity and control constraints[J]. ISA Transactions,2013,52(4): 480-493. doi: 10.1016/j.isatra.2013.03.003
    [14]
    殷春武. 带微分观测器的双环姿态跟踪控制[J]. 北京理工大学学报,2018,38(10): 1073-1078, 1084. doi: 10.15918/j.tbit1001-0645.2018.10.014

    YIN Chunwu. Dual-loop attitude tracking control with differential observer[J]. Transactions of Beijing Institute of Technology,2018,38(10): 1073-1078, 1084. (in Chinese) doi: 10.15918/j.tbit1001-0645.2018.10.014
    [15]
    XU Jianxin,JIN Xu. State-constrained iterative learning control for a class of MIMO systems[J]. IEEE Transactions on Automatic Control,2013,58(5): 1322-1327. doi: 10.1109/TAC.2012.2223353
    [16]
    TAO G. A simple alternative to the Barbalat lemma[J]. IEEE Transactions on Automatic Control,1997,42(5): 698. doi: 10.1109/9.580878
    [17]
    LUO Wencheng,CHU Y C,LING K V. Inverse optimal adaptive control for attitude tracking of spacecraft[J]. IEEE Transactions on Automatic Control,2005,50(11): 1639-1654. doi: 10.1109/TAC.2005.858694
    [18]
    YUAN Ruyi,TAN Xiangmin,FAN Guoliang,et al. Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations[J]. Neurocomputing,2014,125: 72-80. doi: 10.1016/j.neucom.2012.09.036
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return