Volume 39 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
LIU Yu, ZHOU Bo, GU Wu, et al. Laminar burning velocity of aqueous ethanol/RP-3 aviation kerosene mixed fuel[J]. Journal of Aerospace Power, 2024, 39(1):20220150 doi: 10.13224/j.cnki.jasp.20220150
Citation: LIU Yu, ZHOU Bo, GU Wu, et al. Laminar burning velocity of aqueous ethanol/RP-3 aviation kerosene mixed fuel[J]. Journal of Aerospace Power, 2024, 39(1):20220150 doi: 10.13224/j.cnki.jasp.20220150

Laminar burning velocity of aqueous ethanol/RP-3 aviation kerosene mixed fuel

doi: 10.13224/j.cnki.jasp.20220150
  • Received Date: 2022-03-23
    Available Online: 2023-09-20
  • The laminar burning velocities (LBVs) of ethanol/RP-3 aviation kerosene and aqueous ethanol/RP-3 aviation kerosene premixed flames under the initial pressure of 0.1 MPa, initial temperature of 450 K and equivalence ratios of 0.8−1.4 were obtained by using a constant volume combustion experimental device, and the effects of ethanol blending ratio, volume fraction of water in ethanol and equivalence ratio on the LBV of the mixed fuel were analyzed. Results showed that the LBV of ethanol/RP-3 mixed fuel increased with the increase of ethanol blending ratio; when the ethanol blending ratio in RP-3 fuel was constant, the LBV of aqueous ethanol/RP-3 mixed fuel decreased with the increase of volume fraction of water in ethanol. From analysis of the combustion reaction kinetics, the LBV of the mixed fuel was affected by the combined effects of kinetics and thermodynamics. The experimental data obtained can provide a theoretical basis and technical support for the application of bio-ethanol fuel in aeroengine.

     

  • loading
  • [1]
    刘宇,汤卓,孙震,等. 小球藻油/RP-3航空煤油混合燃料的层流燃烧特性[J]. 航空动力学报,2019,34(8): 1663-1670.

    LIU Yu,TANG Zhuo,SUN Zhen,et al. Laminar combustion characteristics of chlorella oil/RP-3 kerosene mixed fuel[J]. Journal of Aerospace Power,2019,34(8): 1663-1670. (in Chinese)
    [2]
    曹运齐,刘云云,胡南江,等. 燃料乙醇的发展现状分析及前景展望[J]. 生物技术通报,2019,35(4): 163-169.

    CAO Yunqi,LIU Yunyun,HU Nanjiang,et al. Current status and prospects of fuel ethanol production[J]. Biotechnology Bulletin,2019,35(4): 163-169. (in Chinese)
    [3]
    诸逢佳,刘建周. 航空生物燃料的现状及研制前景展望[J]. 能源与环境,2011(4): 19-21.

    ZHU Fengjia,LIU Jianzhou. Present situation and development prospect of aviation biofuel[J]. Energy and Environment,2011(4): 19-21. (in Chinese)
    [4]
    廖世勇,井明科,程前,等. 乙醇—空气预混层流火焰特性的试验研究[J]. 内燃机学报,2007,25(5): 469-474.

    LIAO Shiyong,JING Mingke,CHENG Qian,et al. Experimental study on the premixed laminar flames for ethanol-air mixtures[J]. Transactions of CSICE,2007,25(5): 469-474. (in Chinese)
    [5]
    刘阳训. 乙醇-丙酮-空气预混层流燃烧特性研究[D]. 杭州: 浙江大学, 2016.

    LIU Yangxun. Research on laminar flame characteristics of ethanol-acetone-air mixture[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
    [6]
    胡洋洋. 乙醇、乙酸乙酯和丙酮混合燃料的层流燃烧特性研究[D]. 杭州: 浙江大学, 2017.

    HU Yangyang. Research on laminar burning characteristics of ethanol, ethvl acetate, acetone and their blend fuels[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [7]
    GÜLDER Ö L. Laminar burning velocities of methanol, ethanol and isooctane-air mixtures[J]. Symposium (International) on Combustion,1982,19(1): 275-281. doi: 10.1016/S0082-0784(82)80198-7
    [8]
    DIRRENBERGER P,GLAUDE P A,BOUNACEUR R,et al. Laminar burning velocity of gasolines with addition of ethanol[J]. Fuel,2014,115: 162-169. doi: 10.1016/j.fuel.2013.07.015
    [9]
    MENG Zhongwei,LIANG Kun,FANG Jia. Laminar burning velocities of iso-octane, toluene, 1-hexene, ethanol and their quaternary blends at elevated temperatures and pressures[J]. Fuel,2019,237: 630-636. doi: 10.1016/j.fuel.2018.10.072
    [10]
    XU Cangsu,LIU Weinan,XIE Cheng,et al. Accelerating laminar flame speed of hydrous ethanol via oxygen-rich combustion[J]. Bio Energy Research,2021,14(2): 634-644. doi: 10.1007/s12155-020-10204-w
    [11]
    张尊华,李格升,沈宇,等. 含水乙醇-空气预混层流燃烧特性的试验[J]. 内燃机学报,2013,31(1): 59-64.

    ZHANG Zunhua,LI Gesheng,SHEN Yu,et al. Experiment on premixed laminar combustion characteristics for hydrous ethanol-air mixtures[J]. Transactions of CSICE,2013,31(1): 59-64. (in Chinese)
    [12]
    周康泉. 容弹上用定容法测量层流燃烧速度的研究[D]. 杭州: 浙江大学, 2019.

    ZHOU Kangquan. The research of measuring the laminar buring velocity using CVM in the constant volume burning vessel[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
    [13]
    HU Erjiang,HUANG Zuohua,HE Jiajia,et al. Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames[J]. International Journal of Hydrogen Energy,2009,34(11): 4876-4888. doi: 10.1016/j.ijhydene.2009.03.058
    [14]
    HUANG Zuohua,WANG Qian,YU Jinrong,et al. Measurement of laminar burning velocity of dimethyl ether-air premixed mixtures[J]. Fuel,2007,86(15): 2360-2366. doi: 10.1016/j.fuel.2007.01.021
    [15]
    BURKE M P,CHEN Zheng,JU Yiguang,et al. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames[J]. Combustion and Flame,2009,156(4): 771-779. doi: 10.1016/j.combustflame.2009.01.013
    [16]
    BRADLEY D,HICKS R A,LAWES M,et al. The measurement of laminar burning velocities and markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb[J]. Combustion and Flame,1998,115(1/2): 126-144.
    [17]
    FRANKEL M L,SIVASHINSKY G I. On effects due to thermal expansion and lewis number in spherical flame propagation[J]. Combustion Science and Technology,1983,31(3/4): 131-138.
    [18]
    CHEN Z,JU Y. Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame[J]. Combustion Theory and Modelling,2007,11(3): 427-453. doi: 10.1080/13647830600999850
    [19]
    KELLEY A P,LAW C K. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames[J]. Combustion and Flame,2009,156(9): 1844-1851. doi: 10.1016/j.combustflame.2009.04.004
    [20]
    BRADLEY D,LAWES M,MANSOUR M S. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa[J]. Combustion and Flame,2009,156(7): 1462-1470. doi: 10.1016/j.combustflame.2009.02.007
    [21]
    EGOLFOPOULOS F N,DU D X,LAW C K. A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes[J]. Symposium (International) on Combustion,1992,24(1): 833-841. doi: 10.1016/S0082-0784(06)80101-3
    [22]
    KUMAR K,SUNG C J,HUI Xin. Laminar flame speeds and extinction limits of conventional and alternative jet fuels[J]. Fuel,2011,90(3): 1004-1011. doi: 10.1016/j.fuel.2010.11.022
    [23]
    WU Yi,MODICA V,YU Xilong,et al. Experimental investigation of laminar flame speed measurement for kerosene fuels: jet A-1, surrogate fuel, and its pure components[J]. Energy & Fuels,2018,32(2): 2332-2343.
    [24]
    TANG C L,HUANG Z H,LAW C K. Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon-air mixtures[J]. Proceedings of the Combustion Institute,2011,33(1): 921-928. doi: 10.1016/j.proci.2010.05.039
    [25]
    LAW C K,SUNG C J. Structure, aerodynamics, and geometry of premixed flamelets[J]. Progress in Energy and Combustion Science,2000,26(4/5/6): 459-505.
    [26]
    WU Fujia,KELLEY A P,TANG Chenglong,et al. Measurement and correlation of laminar flame speeds of CO and C2 hydrocarbons with hydrogen addition at atmospheric and elevated pressures[J]. International Journal of Hydrogen Energy,2011,36(20): 13171-13180. doi: 10.1016/j.ijhydene.2011.07.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return