Volume 37 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
HUANG Xingrong, SUN He, WU Jian, et al. Analysis of resonant frequency shift phenomenon raised from dynamic strain measurement data of turbine blade in a turbofan engine[J]. Journal of Aerospace Power, 2022, 37(11):2388-2397 doi: 10.13224/j.cnki.jasp.20220189
Citation: HUANG Xingrong, SUN He, WU Jian, et al. Analysis of resonant frequency shift phenomenon raised from dynamic strain measurement data of turbine blade in a turbofan engine[J]. Journal of Aerospace Power, 2022, 37(11):2388-2397 doi: 10.13224/j.cnki.jasp.20220189

Analysis of resonant frequency shift phenomenon raised from dynamic strain measurement data of turbine blade in a turbofan engine

doi: 10.13224/j.cnki.jasp.20220189
  • Received Date: 2022-04-03
    Available Online: 2022-10-11
  • A high-pressure turbine blade of a high thrust-to-weight ratio turbofan adopted edge plate damper design to reduce the vibration stress of the blade. During the core machine ground bench test, the frequency-domain characteristics of the strain test data showed drift phenomenon, and the vibration energy presented random feature in a narrow frequency band. The phenomenon was discussed and analyzed at first. Then the equivalent model of a single blade considering the influence of the edge plate damper was established according to test data. Based on the time integration method and the nonlinear modal theory, the response characteristics, friction characteristics, resonant frequency characteristics and friction damping characteristics of the system were calculated under different rotation speeds. The simulation results showed that the rotation speed fluctuation affected the frequency domain distribution characteristics of the vibration response and the resonant frequency range distribution of the system: at 11 713 r/min, the nonuple excitation order induced the resonance frequency band of 1 756—1 952 Hz, at 13 500 r/min, the octuple excitation order induced the resonance frequency around 1 800 Hz, and at 13 687 r/min, the octuple excitation order induced the resonance frequency band of 1 596—1 824 Hz. Under stable rotational speed, the dry friction force jumped alternatively between the maximum and minimum values, which reflected a friction damping effect and brought about unstable changes in the additional stiffness of the system. The nonlinear modal theory results showed that the modal frequency of the damped blade changed with the vibration response amplitude. The decrease of the blade stiffness or the increase of the friction force amplitude can enlarge the modal frequency range.

     

  • loading
  • [1]
    GRIFFIN J H,SINHA A. The interaction between mistuning and friction in the forced response of bladed disk assemblies[J]. Journal of Engineering for Gas Turbines and Power,1985,107(1): 205-211. doi: 10.1115/1.3239684
    [2]
    SINHA A,GRIFFIN J H,KIELB R E. Influence of friction dampers on torsional blade flutter[J]. Journal of Engineering for Gas Turbines and Power,1986,108(2): 313-318. doi: 10.1115/1.3239905
    [3]
    单颖春,郝燕平,朱梓根,等. 干摩擦阻尼块在叶片减振方面的应用与发展[J]. 航空动力学报,2001,16(3): 218-223. doi: 10.3969/j.issn.1000-8055.2001.03.005

    SHAN Yingchun,HAO Yanping,ZHU Zigen,et al. Application and development of platform friction damper for depressing resonant vibration of blades[J]. Journal of Aerospace Power,2001,16(3): 218-223. (in Chinese) doi: 10.3969/j.issn.1000-8055.2001.03.005
    [4]
    李琳,刘久周,李超. 航空发动机中的干摩擦阻尼器及其设计技术研究进展[J]. 航空动力学报,2016,31(10): 2305-2317. doi: 10.13224/j.cnki.jasp.2016.10.001

    LI Lin,LIU Jiuzhou,LI Chao. Review of the dry friction dampers in aero-engine and their design technologies[J]. Journal of Aerospace Power,2016,31(10): 2305-2317. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.10.001
    [5]
    GAGNON L,MORANDINI M,GHIRINGHELLI G L. A review of friction damping modeling and testing[J]. Archive of Applied Mechanics,2022,90(1): 107-126.
    [6]
    CAMERON T M,GRIFFIN J H. An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems[J]. Journal of Applied Mechanics,1989,56(1): 149-154. doi: 10.1115/1.3176036
    [7]
    CHARLEUX D,GIBERT C,THOUVEREZ F,et al. Numerical and experimental study of friction damping blade attachments of rotating bladed disks[J]. International Journal of Rotating Machinery,2006(1): 1-13.
    [8]
    PETROV E P,EWINS D J. Analytical formulation of friction interface elements for analysis of nonlinear multi-harmonic vibrations of bladed disks[J]. Journal of Turbomachinery,2003,125(2): 364-371. doi: 10.1115/1.1539868
    [9]
    NACIVET S,PIERRE C,THOUVEREZ F,et al. A dynamic Lagrangian frequency-time method for the vibration of dry-friction-damped systems[J]. Journal of Sound and Vibration,2003,265(1): 201-219. doi: 10.1016/S0022-460X(02)01447-5
    [10]
    LAXALDE D, SALLES L, BLANC L, et al. Non-linear modal analysis for bladed disks with friction contact interfaces[J]. ASME Paper GT2008-50860, 2008.
    [11]
    HUANG X R,JÉZÉQUEL L,BESSET S,et al. Nonlinear hybrid modal synthesis based on branch modes for dynamic analysis of assembled structure[J]. Mechanical Systems and Signal Processing,2018,99: 624-646. doi: 10.1016/j.ymssp.2017.07.002
    [12]
    JOANNIN C,THOUVEREZ F,CHOUVION B. Reduced-order modelling using nonlinear modes and triple nonlinear modal synthesis[J]. Computers and Structures,2018,203: 18-33.
    [13]
    黄行蓉, 刘久周, 李琳. 基于非线性模态的复杂系统动力学特性分析方法[J]. 北京航空航天大学学报, 2019, 45(7): 1337-1348.

    HUANG Xingrong, LIU Jiuzhou, LI Lin. Dynamic characteristics analysis method of complex systems based on nonlinear mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1337-1348. (in Chinese)
    [14]
    HONG J,YU P,ZHANG D,et al. Nonlinear dynamic analysis using the complex nonlinear modes for a rotor system with an additional constraint due to rub-impact[J]. Mechanical Systems and Signal Processing,2019,116: 443-461. doi: 10.1016/j.ymssp.2018.06.061
    [15]
    PETROV E P,EWINS D J. Effects of damping and varying contact area at blade-disk joints in forced response analysis of bladed disk assemblies[J]. Journal of Turbomachinery,2006,128(2): 403-410. doi: 10.1115/1.2181998
    [16]
    MENQ C H,BIELAK J,GRIFFIN J H. The influence of microslip on vibratory response: Part Ⅰ a new microslip model[J]. Journal of Sound and Vibration,1986,107(2): 279-293. doi: 10.1016/0022-460X(86)90238-5
    [17]
    MENQ C H,GRIFFIN J H,BIELAK J. The influence of microslip on vibratory response: Part Ⅱ a comparison with experimental results[J]. Journal of Sound and Vibration,1986,107(2): 295-307. doi: 10.1016/0022-460X(86)90239-7
    [18]
    徐自力,常东锋,刘雅琳. 基于微滑移解析模型的干摩擦阻尼叶片稳态响应分析[J]. 振动工程学报,2008(5): 505-510. doi: 10.3969/j.issn.1004-4523.2008.05.014

    XU Zili,CHANG Dongfeng,LIU Yalin. Forced response analysis of blade system with dry friction damper using one-bar microslip analytic model[J]. Journal of Vibration Engineering,2008(5): 505-510. (in Chinese) doi: 10.3969/j.issn.1004-4523.2008.05.014
    [19]
    张大义,杨诚,夏颖,等. 带缘板阻尼结构转子叶片振动特性的影响参数分析[J]. 振动与冲击,2019,38(10): 221-227. doi: 10.13465/j.cnki.jvs.2019.10.033

    ZHANG Dayi,YANG Cheng,XIA Ying,et al. Influential parameters of rotating blades with under platform dampers[J]. Journal of Vibration and Shock,2019,38(10): 221-227. (in Chinese) doi: 10.13465/j.cnki.jvs.2019.10.033
    [20]
    张大义,张嵩,付俭伟,等. 转子叶片缘板阻尼结构设计方法[J]. 航空动力学报,2018,33(4): 961-968. doi: 10.13224/j.cnki.jasp.2018.04.023

    ZHANG Dayi,ZHANG Song,FU Jianwei,et al. Design method for the under platform damper of rotor blade[J]. Journal of Aerospace Power,2018,33(4): 961-968. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.04.023
    [21]
    FEENY B,MOON F C. Chaos in a forced dry friction oscillator: experiments andnumerical modelling[J]. Journal of Sound and Vibration,1994,170(3): 303-323. doi: 10.1006/jsvi.1994.1065
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (196) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return