Volume 37 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
SHI Duoqi, ZHANG Hengbin, LI Zhenlei, et al. Effect of nonuniform stress between holes on failure behavior of thin plate with holes[J]. Journal of Aerospace Power, 2022, 37(11):2353-2361 doi: 10.13224/j.cnki.jasp.20220190
Citation: SHI Duoqi, ZHANG Hengbin, LI Zhenlei, et al. Effect of nonuniform stress between holes on failure behavior of thin plate with holes[J]. Journal of Aerospace Power, 2022, 37(11):2353-2361 doi: 10.13224/j.cnki.jasp.20220190

Effect of nonuniform stress between holes on failure behavior of thin plate with holes

doi: 10.13224/j.cnki.jasp.20220190
  • Received Date: 2022-04-03
    Available Online: 2022-10-10
  • In view of the problem of creep-fatigue cracking caused by thin-walled structure with dense holes in gas turbine engine, the DZ125 thin-walled plate specimens with holes were designed, and the creep-fatigue test was carried out at 850 ℃. Based on the elastic-plastic finite element analysis results of double-hole thin plate, the maximum stress path between two holes was defined as the critical area, and the equivalent stress between holes describing the complex stress state of the plate with holes was proposed. The finite element analysis and test results illustrated that the non-uniform stress between holes is the key factor to determine the cycle life; the cycle life decreased with the increase of the equivalent stress between holes. In addition, the tensile stress along the loading direction is the dominant stress of creep-fatigue failure of thin plate with holes; and the crack was originated from the high stress area of edge holes. Finally, when the the ratio of distance between adjacent holes to the diameter was about 4.22, the equivalent stress changed significantly, so the parameter should be controlled above this critical value in the design.

     

  • loading
  • [1]
    HE K. Investigations of film cooling and heat transfer on a turbine blade squealer tip[J]. Applied Thermal Engineering,2017,110: 630-647. doi: 10.1016/j.applthermaleng.2016.08.173
    [2]
    SANJAY M K S. Investigation of the effect of air film blade cooling on thermoeconomics of gas turbine based power plant cycle[J]. ENERGY,2016,115: 1320-1330. doi: 10.1016/j.energy.2016.09.069
    [3]
    WANG Jiapo,LIANG Jianwei,WEN Zhixun,et al. The inter-hole interference on creep deformation behavior of nickel-based single crystal specimen with film-cooling holes[J]. International Journal of Mechanical Sciences,2019,163: 105090.1-105090.12.
    [4]
    岳彦芳,饶寿期. DZ22多孔板蠕变有限元与试验研究[J]. 航空动力学报,1993,8(4): 383-386,420. doi: 10.13224/j.cnki.jasp.1993.04.017

    YUE Yanfang,RAO Shouqi. Finite element analysis and experiments on creep of multiholed plate DZ-22[J]. Journal of Aerospace Power,1993,8(4): 383-386,420. (in Chinese) doi: 10.13224/j.cnki.jasp.1993.04.017
    [5]
    周天朋,杨晓光,候贵仓,等. DZ125带小孔构件低循环/保载疲劳试验与分析[J]. 航空动力学报,2007,22(9): 1526-1531. doi: 10.3969/j.issn.1000-8055.2007.09.021

    ZHOU Tianpeng,YANG Xiaoguang,HOU Guicang,et al. Experimental analysis of low-cycle and creep fatigue for directionally solidified DZ125 with a hole[J]. Journal of Aerospace Power,2007,22(9): 1526-1531. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.09.021
    [6]
    周天朋,杨晓光,石多奇,等. DZ125光滑试样与小孔构件低循环/保载疲劳寿命建模[J]. 航空动力学报,2008,23(2): 276-280. doi: 10.13224/j.cnki.jasp.2008.02.016

    ZHOU Tianpeng,YANG Xiaoguang,SHI Duoqi,et al. Modeling of low-cycle and creep fatigue life for DZ125 smooth specimens and small-hole components[J]. Journal of Aerospace Power,2008,23(2): 276-280. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.02.016
    [7]
    YOKOYAMA T, SEKIHARA M. Fatigue life estimation method considering inelastic behavior of Ni-based directionally solidified superalloy with multiple holes[C]// Turbo Expo: Power for Land, Sea, and Air. Copenhagen, Denmark: University of Copenhagen, 2012: 293-300.
    [8]
    WATANABE O,KOIKE T. Creep-fatigue life evaluation method for perforated plates at elevated temperature[J]. Journal of Pressure Vessel Technology,2006,128(1): 17-24. doi: 10.1115/1.2137766
    [9]
    艾兴,高行山,温志勋,等. DD6镍基单晶合金气膜孔薄壁平板高温蠕变性能[J]. 航空动力学报,2014,29(5): 1197-1204. doi: 10.13224/j.cnki.jasp.2014.05.028

    AI Xing,GAO Xingshan,WEN Zhixun,et al. Creep behavior of thin-walled plate with cooling holes of nickel-based single crystal superalloy DD6 under high temperature[J]. Journal of Aerospace Power,2014,29(5): 1197-1204. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.05.028
    [10]
    卢绪平, 温志勋, 岳珠峰, 等. 镍基单晶气膜孔模拟试样的低周疲劳断裂机理[J]. 稀有金属材料与工程. 2015, 44(5): 1173-1176.

    LU Xuping, WEN Zhixun, YUE Zhufeng, et al. Low cycle fatigue fracture mechanism of a modeling specimen with cooling film hole of dd6 single crystal superalloy[J]. Rare Metal Materials and Engineering, 2015, 44(5): 1173-1176. (in Chinese)
    [11]
    ZHANG Y,WEN Z,PEI H,et al. Microstructure evolution mechanisms in nickel-based single crystal superalloys under multiaxial stress state[J]. Journal of Alloys and Compounds,2019,797: 1059-1077. doi: 10.1016/j.jallcom.2019.05.143
    [12]
    LIANG Jianwei,AI Xing,WEN Zhixun,et al. Experimental investigation on low cycle fatigue of DZ125 with film cooling holes in different processes of laser drilling[J]. Engineering Failure Analysis,2015,59: 326-333.
    [13]
    李磊, 侯乃先, 敖良波, 等. 不同孔间距下镍基单晶叶片气膜孔弹塑性行为研究[J]. 稀有金属材料与工程, 2013, 42(3): 519-523.

    LI Lei, HOU Naixian, AO Liangbo, et al. Crystallographic behavior of nickel base single crystal blades film cooling holes under different hole distances[J]. Rare Metal Materials and Engineering, 2013, 42(3): 519-523. (in Chinese)
    [14]
    冉文燊,张亚新,赵静. 多孔受力平板孔间应力集中干涉效应的数值模拟分析[J]. 化学工程与装备,2014(12): 38-41.

    RAN Wenshen,ZHANG Yaxin,ZHAO Jing. Numerical simulation analysis of interference effect of stress concentration between porous force plates[J]. Fujian Chemical Industry,2014(12): 38-41. (in Chinese)
    [15]
    胡广丰. 复杂冷却结构单晶涡轮叶片强度计算[D]. 北京: 北京航空航天大学, 2020.

    HU Guangfeng. Strength calculation of single crystal turbine blade with complex cooling structure[D]. Beijing: Beihang University, 2020. (in Chinese)
    [16]
    何雨舒. 高温合金结构缺口疲劳行为及寿命预测[D]. 北京: 北京航空航天大学, 2021.

    HE Yushu. Notched fatigue behavior and life prediction of superalloy structures[D]. Beijing: Beihang University, 2021. (in Chinese)
    [17]
    VERSNYDER F I,SHANK M E. The development of columnar grain and single crystal high temperature materials through directional solidification[J]. Materials Science and Engineering,1970,6(4): 213-247. doi: 10.1016/0025-5416(70)90050-9
    [18]
    KERMANPUR A,VARAHRAAM N,ENGILEHEI E,et al. Directional solidification of Ni base superalloy IN738LC to improve creep properties[J]. Materials Science and Technology,2000,16(5): 579-586. doi: 10.1179/026708300101508117
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (274) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return