Volume 39 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
GUO Miaoxin, FENG Qing, CHANG Ran, et al. One-dimensional analysis of unsteady temperature measurement error characteristics of thermocouple[J]. Journal of Aerospace Power, 2024, 39(3):20220235 doi: 10.13224/j.cnki.jasp.20220235
Citation: GUO Miaoxin, FENG Qing, CHANG Ran, et al. One-dimensional analysis of unsteady temperature measurement error characteristics of thermocouple[J]. Journal of Aerospace Power, 2024, 39(3):20220235 doi: 10.13224/j.cnki.jasp.20220235

One-dimensional analysis of unsteady temperature measurement error characteristics of thermocouple

doi: 10.13224/j.cnki.jasp.20220235
  • Received Date: 2022-04-22
    Available Online: 2023-07-06
  • To reveal the influence mechanism of temperature measurement error of thermocouple under unsteady operating conditions, one-dimensional unsteady calculation model of temperature measurement of thermocouple was established. A comprehensive evaluation was conducted to reveal the influence of different installation structures, bonding materials and surface heat transfer coefficient conditions on the unsteady temperature measurement error for the thermocouple. The influence of Biot number on unsteady temperature measurement was further explored. Results showed that it is necessary to consider environmental radiation effect. Temperature error was 1.48 K at 300 s temperature measurement time compared with that without consideration of environmental radiation effect. Different installation structures of thermocouple had a greater impact on the temperature measurement error, with a maximum measurement temperature difference of 1.85 K. Moreover, the greater thermal conductivity of the bonding material indicated, the smaller temperature measurement error in the stage of unsteady regular status, and the absolute error was less than 0.5 K after 150 s temperature measurement time. Especially, the surface heat transfer coefficient played an important role in the unsteady temperature measurement error. The larger surface heat transfer coefficient indicated the greater temperature measurement error due to initial temperature field. When the thermal conductivity of bonding material was 2.4 W/(m·K), the variation range of temperature measurement error within the surface heat transfer coefficient range of 50−250 W/(m2·K) was 0.2−0.5 K. Therefore, the research results can provide a reference for the unsteady measurement of wall temperature in the heat transfer experiments of aero-engine.


  • loading
  • [1]
    BASHA M,SHAAHID S M,AL-HADHRAMI L. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants[J]. Thermal Science,2013,17(4): 1107-1117. doi: 10.2298/TSCI110708042B
    SOUSA J,VILLAFAÑE L,PANIAGUA G. Thermal analysis and modeling of surface heat exchangers operating in the transonic regime[J]. Energy,2014,64: 961-969. doi: 10.1016/j.energy.2013.11.032
    CHANDRASEKARAN N,GUHA A. Development and optimization of a sustainable turbofan aeroengine for improved performance and emissions[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2013,227(11): 1701-1719. doi: 10.1177/0954410012462183
    杨灿,吴伟力,熊义彬,等. 航空发动机燃烧室出口高温热电偶校准技术[J]. 航空动力学报,2016,31(4): 769-774. doi: 10.13224/j.cnki.jasp.2016.04.001

    YANG Can,WU Weili,XIONG Yibin,et al. Calibration technology of high-temperature thermocouple for combustor exit of an aero-engine[J]. Journal of Aerospace Power,2016,31(4): 769-774. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.04.001
    ZOU Zhengping,YANG Weiping,ZHANG Weihao,et al. Numerical modeling of steady state errors for shielded thermocouples based on conjugate heat transfer analysis[J]. International Journal of Heat and Mass Transfer,2018,119: 624-639. doi: 10.1016/j.ijheatmasstransfer.2017.11.034
    JHAJJ K S, CARON E F J R, CHESTER N L, et al. Accuracy of thermocouples in transient surface temperature measurements dominated by radiant heating[R]. ASME Paper IMECE2014-38243, 2014.
    TSZENG T C,SARAF V. A study of fin effects in the measurement of temperature using surface-mounted thermocouples[J]. Journal of Heat Transfer,2003,125(5): 926-935. doi: 10.1115/1.1597622
    WOODBURY K A,GUPTA A. A simple 1D sensor model to account for deterministic thermocouple errors (bias) in the solution of the inverse heat conduction problem[J]. Inverse Problems in Science and Engineering,2008,16(1): 21-37. doi: 10.1080/17415970701198241
    PARK J E, CHILDS KW, LUDTKA G M, et al. Correction of errors in intrinsic thermocouple signals recorded during quenching [C]//National Heat Transfer Conference. Minneapolis, US: University of Minnesota System, 1991: 28-31.
    VAŹQUEZ R, SAŃCHEZ J M. Temperature measurement system for low pressure ratio turbine testing[C]//Proceedings of ASME Turbo Expo 2003 Power for Land, Sea, and Air. Atlanta, Georgia, US: ASME, 2003: 6–19.
    STRAUBINGER D, ILLÉS B, BERÉNYI R, et al. Simulation of reflow-based heat transfer on different thermocouple constructions[C]//2020 43rd International Spring Seminar on Electronics Technology. Piscataway, US: IEEE, 2020: 1-6.
    杨伟平,张伟昊,邹正平,等. 屏蔽式总温热电偶的稳态误差分析及改型设计[J]. 航空动力学报,2018,33(11): 2784-2795. doi: 10.13224/j.cnki.jasp.2018.11.025

    YANG Weiping,ZHANG Weihao,ZOU Zhengping,et al. Steady state error estimation and modification of a shielded thermocouple[J]. Journal of Aerospace Power,2018,33(11): 2784-2795. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.11.025
    白杰,陈昭,王伟. 热电偶温度测量的误差及影响因素分析[J]. 机床与液压,2017,45(22): 138-141, 183. doi: 10.3969/j.issn.1001-3881.2017.22.036

    BAI Jie,CHEN Zhao,WANG Wei. Error and influence factor analysis of thermocouple temperature measurement[J]. Machine Tool & Hydraulics,2017,45(22): 138-141, 183. (in Chinese) doi: 10.3969/j.issn.1001-3881.2017.22.036
    李伟. 热电偶测温误差的来源与处理[C]//第十八届中国航空测控技术年会论文集. 青岛: 中国航空工业技术装备工程协会, 2021: 256-259.
    GRECH A, SANT T, FARRUGIA M. The effects of thermocouple materials and insulating mica in an erodable surface thermocouple[C]// Proceedings of 2008 ASME Summer Heat Transfer Conference. Jacksonville, US: ASME, 2008: 10-14.
    POPE I,HIDALGO J P,HADDEN R M,et al. A simplified correction method for thermocouple disturbance errors in solids[J]. International Journal of Thermal Sciences,2022,172: 107324. doi: 10.1016/j.ijthermalsci.2021.107324
    HAGER N E Jr. Thermocouple probe for surface-temperature measurement[J]. Review of Scientific Instruments,1985,56(3): 421-426. doi: 10.1063/1.1138316
    TAN G E, CARTE C, FAN Yuehong. Thermocouple attachment methodology for memory[C]//2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm). Piscataway, US: IEEE, 2021: 1150-1153.
    陈龙,陈跃飞,杨子锷,等. 热电偶测量误差及其注意事项[J]. 计量与测试技术,2017,44(2): 43-46. doi: 10.15988/j.cnki.1004-6941.2017.02.021

    CHEN Long,CHEN Yuefei,YANG Zie,et al. Thermocouple measurement error and its matters needing attention[J]. Metrology & Measurement Technique,2017,44(2): 43-46. (in Chinese) doi: 10.15988/j.cnki.1004-6941.2017.02.021
    孙昊博,毛晓奇,朱传龙. 航空发动机热电偶传感器稳态测温偏差分析[J]. 航空动力学报,2022,37(9): 2009-2016. doi: 10.13224/j.cnki.jasp.20210417

    SUN Haobo,MAO Xiaoqi,ZHU Chuanlong. Analysis of steady-state temperature measurement deviation of thermocouple sensors on aeroengine[J]. Journal of Aerospace Power,2022,37(9): 2009-2016. (in Chinese) doi: 10.13224/j.cnki.jasp.20210417
    杨兆欣,曾星,张文清. 气体介质条件下的热电偶动态特性[J]. 航空动力学报,2020,35(12): 2514-2520. doi: 10.13224/j.cnki.jasp.2020.12.005

    YANG Zhaoxin,ZENG Xing,ZHANG Wenqing. Dynamic characteristics of thermocouple in gas medium[J]. Journal of Aerospace Power,2020,35(12): 2514-2520. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.12.005
    季江华,石坤田,黄波. 热电偶冷热端动态特性对测温精度影响研究[J]. 科学技术创新,2018(20): 58-59. doi: 10.3969/j.issn.1673-1328.2018.20.037

    JI Jianghua,SHI Kuntian,HUANG Bo. Study on the influence of dynamic characteristics of thermocouple cold and hot ends on temperature measurement accuracy[J]. Scientific and Technological Innovation,2018(20): 58-59. (in Chinese) doi: 10.3969/j.issn.1673-1328.2018.20.037
    季念,马朝臣. 一种屏蔽式总温探头设计及其测量误差估计[J]. 航空动力学报,2023,38(7): 1749-1761. doi: 10.13224/j.cnki.jasp.20210620

    JI Nian,MA Chaochen. Design and measurement error estimation of a shielded total temperature probe[J]. Journal of Aerospace Power,2023,38(7): 1749-1761. (in Chinese) doi: 10.13224/j.cnki.jasp.20210620
    韩省思, 毛军逵. 热电偶埋设方式对测温精度的影响研究[C]//中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议论文集: S07发动机热管理相关技术. 昆明: 中国航天第三专业信息网, 2019: 141-152.
    杜冠廷. 热电偶测量表面温升的误差和优化研究[D]. 广州: 华南理工大学, 2023.

    DU Guanting. Research on error and optimization of thermocouple measuring surface temperature rise[D]. Guangzhou: South China University of Technology, 2023. (in Chinese)
    杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
    曹玉璋, 邱绪光. 实验传热学[M]. 北京: 国防工业出版社, 1998.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (139) PDF downloads(53) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint