Volume 37 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
ZHANG Hongzhou, HUANG Yong, YUAN Weiwei. Semi-empirical model for shape of liquid sheet formed by oblique jet impinging onto wall[J]. Journal of Aerospace Power, 2022, 37(11):2534-2543 doi: 10.13224/j.cnki.jasp.20220238
Citation: ZHANG Hongzhou, HUANG Yong, YUAN Weiwei. Semi-empirical model for shape of liquid sheet formed by oblique jet impinging onto wall[J]. Journal of Aerospace Power, 2022, 37(11):2534-2543 doi: 10.13224/j.cnki.jasp.20220238

Semi-empirical model for shape of liquid sheet formed by oblique jet impinging onto wall

doi: 10.13224/j.cnki.jasp.20220238
  • Received Date: 2022-04-22
    Available Online: 2022-09-09
  • By solving the thickness and velocity distribution of the liquid sheet formed by an oblique liquid jet impinging onto a wall, in combination with the energy equation and empirical approximation, a semi-empirical model was established to predict the liquid sheet boundary. The model can directly describe the influence of various factors without numerical iteration of the complex equations. To verify the accuracy of the model, experimental studies were carried out, and the influences of the jet velocity, impact angle, viscosity and surface tension were analyzed. Then, the model results were compared with the experimental results. It was found that the model had a good prediction ability for the liquid sheet shape. The correlation coefficients of the experimental and model boundary curves under all working conditions were larger than 0.99. The model also had a high prediction accuracy even for the downstream complex flow area, with the error about 1%.

     

  • loading
  • [1]
    唐亮,李平,周立新. 液体火箭发动机液膜冷却研究综述[J]. 火箭推进,2020,46(1): 1-12. doi: 10.3969/j.issn.1672-9374.2020.01.001

    TANG Liang,LI Ping,ZHOU Lixin. Review on liquid film cooling of liquid rocket engine[J]. Journal of Rocket Propulsion,2020,46(1): 1-12. (in Chinese) doi: 10.3969/j.issn.1672-9374.2020.01.001
    [2]
    VOLKMANN J C, MCLEOD J M, CLAFLIN S E. Investigation of throat film coolant for advanced LOx/RP-1 thrust chambers[R].AIAA-1991-1979,1991.
    [3]
    吴凌峰,杨成虎,姚锋,等. 单股自由圆射流撞壁雾化实验[J]. 火箭推进,2020,46(1): 44-51. doi: 10.3969/j.issn.1672-9374.2020.01.006

    WU Lingfeng,YANG Chenghu,YAO Feng,et al. Atomization experiment of single free circular jet impinging against wall[J]. Journal of Rocket Propulsion,2020,46(1): 44-51. (in Chinese) doi: 10.3969/j.issn.1672-9374.2020.01.006
    [4]
    PETRUCHIK A I,SOLODUKHIN A D,FISENKO S P. Simulation of cooling of water droplet and film flows in large natural wet cooling towers[J]. Journal of Engineering Physics and Thermophysics,2001,74(1): 62-68. doi: 10.1023/A:1016673803772
    [5]
    SCHULZ F,BEYRAU F. The effect of operating parameters on the formation of fuel wall films as a basis for the reduction of engine particulate emissions[J]. Fuel,2019,238: 375-384. doi: 10.1016/j.fuel.2018.10.109
    [6]
    CHEN B,FENG L,WANG Y,et al. Spray and flame characteristics of wall-impinging diesel fuel spray at different wall temperatures and ambient pressures in a constant volume combustion vessel[J]. Fuel,2019,235: 416-425. doi: 10.1016/j.fuel.2018.07.154
    [7]
    FENG L,SUN X,PAN X,et al. Gasoline spray characteristics using a high pressure common rail diesel injection system by the method of laser induced exciplex fluorescence[J]. Fuel,2021,302: 121174.1-121174.14.
    [8]
    INAMURA T,SHIROTA M. Effect of velocity profile of impinging jets on sheet characteristics formed by impingement of two round liquid jets[J]. International Journal of Multiphase Flow,2014,60: 149-160. doi: 10.1016/j.ijmultiphaseflow.2013.12.006
    [9]
    KIBAR A. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation[J]. Fluid Dynamics Research,2015,48(1): 015501.1-015501.20.
    [10]
    DAIRAY T,FORTUNE V,LAMBALLAIS E,et al. LES of a turbulent jet impinging on a heated wall using high-order numerical schemes[J]. International Journal of Heat and Fluid Flow,2014,50: 177-187. doi: 10.1016/j.ijheatfluidflow.2014.08.001
    [11]
    TAYLOR G. Oblique impact of a jet on a plane surface[J]. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences,1966,260: 96-100.
    [12]
    HASSON D,PECK R E. Thickness distribution in a sheet formed by impinging jets[J]. AIChE Journal,1964,10(5): 752-754. doi: 10.1002/aic.690100533
    [13]
    GLAUERT M B. The wall jet[J]. Journal of Fluid Mechanics,1956,1(6): 625-643. doi: 10.1017/S002211205600041X
    [14]
    WATSON E J. The radial spread of a liquid jet over a horizontal plane[J]. Journal of Fluid Mechanics,1964,20(3): 481-499. doi: 10.1017/S0022112064001367
    [15]
    NABER J D, REITZ R D. Modeling Engine spray/wall impingement[C]// SAE International Congress & Exposition. Detroit, US: SAE, 1988: 118-140.
    [16]
    IBRAHIM E A,PRZEKWAS A J. Impinging jets atomization[J]. Physics of Fluids A Fluid Dynamics,1991,3(12): 2981-2987. doi: 10.1063/1.857840
    [17]
    AZUMA T,HOSHINO T. The radial flow of a thin liquid film: 2nd report, liquid film thickness[J]. Bulletin of JSME,1984,27(234): 2747-2754. doi: 10.1299/jsme1958.27.2747
    [18]
    INAMURA T,YANAOKA H,TOMODA T. Prediction of mean droplet size of sprays issued from wall impingement injector[J]. AIAA Journal,2004,42(3): 614-621. doi: 10.2514/1.9112
    [19]
    INAMURA T,AMAGASAKI S,YANAOKA H. Thickness of liquid film formed by impinging jets on a concave wall[J]. Journal of Propulsion and Power,2007,23(3): 612-617. doi: 10.2514/1.27691
    [20]
    林庆国,杨成虎,刘犇. 射流角度和壁面曲率对撞壁液膜的影响[J]. 国防科技大学学报,2013,35(2): 17-21. doi: 10.3969/j.issn.1001-2486.2013.02.004

    LIN Qingguo,YANG Chenghu,LIU Ben. Effect of impingement angle and wall curvature on liquid film[J]. Journal of National University of Defense Technology,2013,35(2): 17-21. (in Chinese) doi: 10.3969/j.issn.1001-2486.2013.02.004
    [21]
    KATE R P,DAS P K,CHAKRABORTY S. Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface[J]. Journal of Fluid Mechanics,2007,573: 247-263. doi: 10.1017/S0022112006003818
    [22]
    YANG L J,LI P H,FU Q F. Liquid sheet formed by a Newtonian jet obliquely impinging on pro/hydrophobic surfaces[J]. International Journal of Multiphase Flow,2020,125: 103192.1-103192.9.
    [23]
    唐亮, 胡锦华, 刘计武, 等 倾斜射流撞壁实验研究及液膜几何参数建模[J]. 航空学报, 2020, 41(12): 163-172.

    TANG Liang, HU Jinhua, LIU Jiwu, et al. Experimental study on oblique jet wall impingement and geometrical parameter model of liquid film[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 163-172. (in Chinese)
    [24]
    唐亮,李平,周立新,等. 倾斜射流撞壁形成的液膜外形的理论建模[J]. 推进技术,2021,42(2): 327-334. doi: 10.13675/j.cnki.tjjs.190766

    TANG Liang,LI Ping,ZHOU Lixin,et al. Theoretical modeling of liquid sheet shape formed by oblique jet impinging onto wall[J]. Journal of Propulsion Technology,2021,42(2): 327-334. (in Chinese) doi: 10.13675/j.cnki.tjjs.190766
    [25]
    WANG R,HUANG Y,FENG X,et al. Semi-empirical model for the engine liquid fuel sheet formed by the oblique jet impinging onto a plate[J]. Fuel,2018,233: 84-93. doi: 10.1016/j.fuel.2018.06.028
    [26]
    唐树江,李明军. 平板层流边界层速度分布的一种最佳近似解析解[J]. 湘潭大学自然科学学报,2013,35(1): 18-20. doi: 10.3969/j.issn.1000-5900.2013.01.004

    TANG Shujiang,LI Mingjun. An optimum approximate analytical solution for laminar boundary layer velocity with flat distribution[J]. Natural Science Journal of Xiangtan University,2013,35(1): 18-20. (in Chinese) doi: 10.3969/j.issn.1000-5900.2013.01.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return