Volume 39 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
YANG Haifeng, WANG Jinna, WANG Yuxiang. Multiple-model self-calibration extended Kalman filter method[J]. Journal of Aerospace Power, 2024, 39(4):20220245 doi: 10.13224/j.cnki.jasp.20220245
Citation: YANG Haifeng, WANG Jinna, WANG Yuxiang. Multiple-model self-calibration extended Kalman filter method[J]. Journal of Aerospace Power, 2024, 39(4):20220245 doi: 10.13224/j.cnki.jasp.20220245

Multiple-model self-calibration extended Kalman filter method

doi: 10.13224/j.cnki.jasp.20220245
  • Received Date: 2022-04-24
    Available Online: 2023-09-19
  • Based on the extended Kalman filter (EKF), the self-calibration extended Kalman filter (SEKF) and the multiple-model estimation (MME), and considering the influence of unknown inputs (such as gusts, faults, unknown system errors, etc.) on the nonlinear system state equation in Engineering, the multiple-model self-calibration extended Kalman filter (MSEKF) was proposed to expand the application scope of the multiple-model self-calibration Kalman filter (MSKF). According to the Bayes’ theorem, this filtering method used the EKF and the SEKF whose weights were assigned automatically to obtain the final filtering result through weight-average way. The MSEKF can not only effectively compensate the effects of non-zero unknown inputs on the nonlinear system, but also improve the estimation accuracy compared with the SEKF when these effects were zero. A large number of simulation results using the proposed method showed that the accuracy can be improved by more than 4%, showing stronger adaptability and robustness.


  • loading
  • [1]
    KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering,1960,82(1): 35-45. doi: 10.1115/1.3662552
    SUNAHARA Y. An approximate method of state estimation for nonlinear dynamical systems[J]. Journal of Basic Engineering,1970,92(2): 385-393. doi: 10.1115/1.3425006
    FUJIMOTO O,OKITA Y,OZAKI S. Nonlinearity compensation Extended Kalman filter and its application to target motion[J]. Oki Technical Review,1997,63(159): 1-12.
    JULIER S J, UHLMANN J K. A new extension of Kalman filter to nonlinear systems[C]//Proceedings of 11th International Symposium Aerospace/Defense Sensing, Simulation and Controls. Orlando, US: Society of Photo-Optical Instrumentation Engineers (SPIE), 1997: 182-193.
    JULIER S,UHLMANN J,DURRANT-WHYTE H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control,2000,45(3): 477-482. doi: 10.1109/9.847726
    JULIER S J,UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3): 401-422. doi: 10.1109/JPROC.2003.823141
    DAN S. Optimal state estimation: Kalman, H[infinity], and nonlinear approaches[M]. Hoboken, US: John Wiley and Sons, 2006.
    ARASARATNAM I,HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control,2009,54(6): 1254-1269. doi: 10.1109/TAC.2009.2019800
    PITT M K,SHEPHARD N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Statistical Association,1999,94(446): 590-599. doi: 10.1080/01621459.1999.10474153
    傅惠民,肖强,吴云章,等. 秩滤波方法[J]. 机械强度,2014,36(4): 521-526. doi: 10.16579/j.issn.1001.9669.2014.04.031

    FU Huimin,XIAO Qiang,WU Yunzhang,et al. Rank filter method[J]. Journal of Mechanical Strength,2014,36(4): 521-526. (in Chinese) doi: 10.16579/j.issn.1001.9669.2014.04.031
    傅惠民,肖强,娄泰山,等. 非线性非高斯秩滤波方法[J]. 航空动力学报,2015,30(10): 2318-2322. doi: 10.13224/j.cnki.jasp.2015.10.003

    FU Huimin,XIAO Qiang,LOU Taishan,et al. Nonlinear and non-Guassian rank filter method[J]. Journal of Aerospace Power,2015,30(10): 2318-2322. (in Chinese) doi: 10.13224/j.cnki.jasp.2015.10.003
    BLANKE M, SCHRÖDER J. Diagnosis and fault-tolerant control[M]. 2nd ed. Berlin, Germany: Springer, 2006.
    CHEN J, PATTON R. Robust model-based fault diagnosis for dynamic systems[M]. Boston, US: Kluwer Academic Publishers, 1999
    GILLIJNS S,DE MOOR B. Unbiased minimum-variance input and state estimation for linear discrete-time systems[J]. Automatica,2007,43(1): 111-116. doi: 10.1016/j.automatica.2006.08.002
    傅惠民,吴云章,娄泰山,等. 自校准Kalman滤波方法[J]. 航空动力学报,2014,29(6): 1363-1368. doi: 10.13224/j.cnki.jasp.2014.06.015

    FU Huimin,WU Yunzhang,LOU Taishan,et al. Self-calibration Kalman filter method[J]. Journal of Aerospace Power,2014,29(6): 1363-1368. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.06.015
    傅惠民,娄泰山,肖强,等. 自校准扩展Kalman滤波方法[J]. 航空动力学报,2014,29(11): 2710-2715.

    FU Huimin,LOU Taishan,XIAO Qiang,et al. Self-calibration extended Kalman filter method[J]. Journal of Aerospace Power,2014,29(11): 2710-2715. (in Chinese)
    傅惠民,杨海峰,文歆磊. 非线性自识别自校准Kalman滤波方法[J]. 控制与信息技术,2019(5): 7-11.

    FU Huimin,YANG Haifeng,WEN Xinlei. A nonlinear self-recognition self-calibration Kalman filtering method[J]. Control and Information Technology,2019(5): 7-11. (in Chinese)
    MAGILL D. Optimal adaptive estimation of sampled stochastic processes[J]. IEEE Transactions on Automatic Control,1965,10(4): 434-439. doi: 10.1109/TAC.1965.1098191
    XIAO Rongli. Hybrid estimation techniques[J]. Control and Dynamic Systems,1996,76: 213-287.
    MAZOR E, AVERBUCH A, BAR-SHALOM Y, et al. Interacting multiple model methods in target tracking: a survey[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 103-123
    LI X R,BAR-SHALOM Y. Performance prediction of the interacting multiple model algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems,1993,29(3): 755-771. doi: 10.1109/7.220926
    DAEIPOUR E,BAR-SHALOM Y. IMM tracking of maneuvering targets in the presence of glint[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(3): 996-1003. doi: 10.1109/7.705913
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (62) PDF downloads(15) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint