Citation: | LI Yang, LI Wei, CHEN Jingwei, et al. Convective heat transfer characteristics of sparse hole wall in semi-closed narrow channel[J]. Journal of Aerospace Power, 2024, 39(3):20220246 doi: 10.13224/j.cnki.jasp.20220246 |
In order to study the convective heat transfer characteristics inside the double-wall composite cooling turbine blade, a narrow semi-closed passage with lateral outflow through sparse holes was designed. Test methods were used to study the effects of different inlet Reynolds numbers and geometric parameters of outflow holes on the convective heat transfer characteristics of the outflow wall surface. The results showed that, the superposition of overflow effect and impact effect occurred in the downstream area of the outlet hole due to the outflow of cool air. A typical droplet cryogenic zone appeared in the downstream area of the outlet hole, and its coverage area increased with the increase of the outlet hole size and inlet Re number; the average Nusselt number of the outlet wall presented four variation characteristics along the flow direction. The average Nusselt number of the inlet section was 80% higher than that of the downstream section; there was an optimal outlet hole span spacing ratio, so that the average convective heat transfer coefficient on the wall reached the maximum. The average wall Nusselt number of the major hole spacing was 20% lower than that of the intermediate hole spacing.
[1] |
HAN J C, DUTTA S, EKKAD S. Gas turbine heat transfer and cooling technology[M]. 2nd ed. Boca Raton, US: CRC Press/Taylor & Francis, 2013.
|
[2] |
张利民,闻洁,丁水汀,等. 低压涡轮叶片内冷通道不同强化换热方案的换热特性[J]. 航空动力学报,2005,20(4): 668-672.
ZHANG Limin,WEN Jie,DING Shuiting,et al. Study of heat transfer characteristics of different cooling configurations inside a typical low pressure turbine blade[J]. Journal of Aerospace Power,2005,20(4): 668-672. (in Chinese)
|
[3] |
SCHEEPERS G,MORRIS R M. Experimental study of heat transfer augmentation near the entrance to a film cooling hole in a turbine blade cooling passage[J]. Journal of Turbomachinery,2009,131(4): 044501.1-044501.13.
|
[4] |
EKKAD S V,HUANG Yizhe,HAN J C. Detailed heat transfer distributions in two-pass square channels with rib turbulators and bleed holes[J]. International Journal of Heat and Mass Transfer,1998,41(23): 3781-3791. doi: 10.1016/S0017-9310(98)00099-4
|
[5] |
THURMAN D,POINSATTE P. Experimental heat transfer and bulk air temperature measurements for a multipass internal cooling model with ribs and bleed[J]. Journal of Turbomachinery,2001,123(1): 90-96. doi: 10.1115/1.1333090
|
[6] |
杨力,阚瑞,任静,等. 带气膜孔内部冷却通道的流动传热特性[J]. 工程热物理学报,2011,32(8): 1385-1388.
YANG Li,KAN Rui,REN Jing,et al. Aero-and thermodynamic features of the flow fields in the internal cooling channels with film cooling holes[J]. Journal of Engineering Thermophysics,2011,32(8): 1385-1388. (in Chinese)
|
[7] |
苏文超,朱惠人,聂建豪. 横流马赫数对溢流孔附近流动及换热的影响[J]. 推进技术,2014,35(12): 1645-1652.
SU Wenchao,ZHU Huiren,NIE Jianhao. Effects of cross-flow Mach number on flow and heat transfer characteristics around effusion hole[J]. Journal of Propulsion Technology,2014,35(12): 1645-1652. (in Chinese)
|
[8] |
王磊,陶智,王海潮,等. 旋转涡轮叶片前缘热色液晶测温技术研究[J]. 航空动力学报,2017,32(11): 2638-2645.
WANG Lei,TAO Zhi,WANG Haichao,et al. Study on thermometry of leading edge of rotating turbine blade by thermochromic liquid crystal[J]. Journal of Aerospace Power,2017,32(11): 2638-2645. (in Chinese)
|
[9] |
刘湘云,陶智,丁水汀,等. 带60°肋U型通道中气膜孔对通道换热特性的影响[J]. 航空动力学报,2005,20(5): 822-826.
LIU Xiangyun,TAO Zhi,DING Shuiting,et al. Effect of bleeding holes on heat transfer characteristics inside U-shaped channel with 60° skewed ribs[J]. Journal of Aerospace Power,2005,20(5): 822-826. (in Chinese)
|
[10] |
丁水汀,侯晓静,徐国强,等. 矩形通道内气膜出流对内换热的影响规律[J]. 北京航空航天大学学报,2007,33(4): 418-421.
DING Shuiting,HOU Xiaojing,XU Guoqiang,et al. Film bleeding on internal cooling in rectangular channel[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(4): 418-421. (in Chinese)
|
[11] |
徐磊,常海萍,常国强,等. 叶片内部气膜孔附近壁面局部换热特性[J]. 推进技术,2006,27(3): 248-251, 265.
XU Lei,CHANG Haiping,CHANG Guoqiang,et al. Heat transfer characteristics near a row of film cooling holes in interior of turbine blade[J]. Journal of Propulsion Technology,2006,27(3): 248-251, 265. (in Chinese)
|
[12] |
徐磊,常海萍,毛军逵,等. 气膜出流冷气侧气膜孔附近壁面换热特性[J]. 推进技术,2007,28(2): 141-143, 203. doi: 10.3321/j.issn:1001-4055.2007.02.007
XU Lei,CHANG Haiping,MAO Junkui,et al. Local heat transfer characteristics near film cooling holes on cooling side in film cooling[J]. Journal of Propulsion Technology,2007,28(2): 141-143, 203. (in Chinese) doi: 10.3321/j.issn:1001-4055.2007.02.007
|
[13] |
王开,徐国强,孙纪宁,等. 直径比对冲击气膜组合冷却流动与换热的影响[J]. 航空学报,2008,29(4): 823-828.
WANG Kai,XU Guoqiang,SUN Jining,et al. Effects of diameter ratio on the characteristics of flow and heat transfer in hybrid cooling configuration[J]. Acta Aeronautica et Astronautica Sinica,2008,29(4): 823-828. (in Chinese)
|
[14] |
张镜洋,常海萍,徐磊. 转子叶片径向受限的“冲击-气膜出流”冷却结构流动与换热[J]. 推进技术,2011,32(1): 125-129, 139.
ZHANG Jingyang,CHANG Haiping,XU Lei. Flow and heat transfer characteristics of “impingement-film cooling” configuration in limited space of rotating blade[J]. Journal of Propulsion Technology,2011,32(1): 125-129, 139. (in Chinese)
|
[15] |
裘云,朱惠人,许都纯,等. 带肋壁与出流孔内流通道的流阻特性[J]. 推进技术,2003,24(4): 341-343. doi: 10.3321/j.issn:1001-4055.2003.04.015
QIU Yun,ZHU Huiren,XU Duchun,et al. Pressure loss of the internal passage with rib turbulators and suction holes[J]. Journal of Propulsion Technology,2003,24(4): 341-343. (in Chinese) doi: 10.3321/j.issn:1001-4055.2003.04.015
|
[16] |
裘云. 带肋壁与气膜孔出流通道的流动特性研究[D]. 西安: 西北工业大学, 2003.
QIU Yun. Flow characteristics in passages with rib-turbulators and film-holes’ extractions[D]. Xi’an: Northwestern Polytechnical University, 2003. (in Chinese)
|
[17] |
王龙. 冲击气膜与多斜孔复合冷却特性研究[D]. 南京: 南京航空航天大学, 2020.
WANG Long. Research on cooling characteristics of the combined impinging film and effusion system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
|
[18] |
KLINE S. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering,1953,75: 3-8.
|