Volume 39 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
LI Hao, LIU Yong, ZHANG Xiang, et al. Three-dimensional simulation of combustion instability characteristics in LPP combustor[J]. Journal of Aerospace Power, 2024, 39(3):20220250 doi: 10.13224/j.cnki.jasp.20220250
Citation: LI Hao, LIU Yong, ZHANG Xiang, et al. Three-dimensional simulation of combustion instability characteristics in LPP combustor[J]. Journal of Aerospace Power, 2024, 39(3):20220250 doi: 10.13224/j.cnki.jasp.20220250

Three-dimensional simulation of combustion instability characteristics in LPP combustor

doi: 10.13224/j.cnki.jasp.20220250
  • Received Date: 2022-04-25
    Available Online: 2023-09-27
  • In order to analyze the combustion instability (CI) characteristics of lean premixed pre-vaporized (LPP) combustor, three-dimensional Helmholtz equations were simplified at three different levels. The average temperature field equation without source term, the imported CFD temperature field equation without source term, and the imported combustion flow field characteristics equation with source term, were respectively simulated for the single-head LPP combustor model in three-dimensional frequency domain. The results showed that the temperature distribution in the combustor was an important factor affecting the acoustic eigenfrequency of the combustor, and the source term of heat release rate had no effect on the main frequency. Compared with only setting of average temperature field, importing the 3D temperature field calculated by CFD can obtain more consistent results with the experimental frequency, and the accuracy was increased by 5%. The relationship between the acoustic system and the combustion flow field can be quickly established by solving the frequency domain equation in a decoupling way. The spatial distribution characteristics of heat release rate and hysteresis time were represented by the source term of the Helmholtz equation, which had no effect on the prediction of the natural frequency of the combustion chamber, but the detailed sound pressure distribution characteristics can be obtained.

     

  • loading
  • [1]
    李磊,孙晓峰. 推进动力系统燃烧不稳定性产生的机理、预测及控制方法[J]. 推进技术,2010,31(6): 710-720.

    LI Lei,SUN Xiaofeng. Mechanism, prediction and control method of combustion instability in propulsion system[J]. Journal of Propulsion Technology,2010,31(6): 710-720. (in Chinese)
    [2]
    张弛,林宇震,徐华胜,等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报,2014,35(2): 332-350.

    ZHANG Chi,LIN Yuzhen,XU Huasheng,et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2): 332-350. (in Chinese)
    [3]
    朱民,DOWLING A P,BRAY K N C. 振荡燃烧过程的计算和诊断[J]. 工程热物理学报,2007,28(1): 165-168.

    ZHU Min,DOWLING A P,BRAY K N C. Calculations and predications of combustion oscillations[J]. Journal of Engineering Thermophysics,2007,28(1): 165-168. (in Chinese)
    [4]
    张志浩,刘潇,郑洪涛,等. 燃烧不稳定性实验诊断及数值分析方法研究进展[J]. 燃气轮机技术,2021,34(3): 1-13.

    ZHANG Zhihao,LIU Xiao,ZHENG Hongtao,et al. Research progress of experimental diagnosis and numerical analysis methods of combustion instability[J]. Gas Turbine Technology,2021,34(3): 1-13. (in Chinese)
    [5]
    于丹,郭志辉,杨甫江. 贫燃预混燃烧室中的分布式火焰传递函数分析[J]. 推进技术,2016,37(12): 2210-2218.

    YU Dan,GUO Zhihui,YANG Fujiang. Experimentally study on distribution of flame transfer function in a lean premixed combustor[J]. Journal of Propulsion Technology,2016,37(12): 2210-2218. (in Chinese)
    [6]
    唐豪杰,高原,朱民. 预混火焰传递函数的测量与分析[J]. 工程热物理学报,2011,32(1): 173-176.

    TANG Haojie,GAO Yuan,ZHU Min. Measurements and analysis of premixed flame transfer function[J]. Journal of Engineering Thermophysics,2011,32(1): 173-176. (in Chinese)
    [7]
    PASCHEREIT C, FLOHR P, SCHUERMANS B. Prediction of combustion oscillations in gas turbine combustors[R]. AIAA2001-484, 2001.
    [8]
    KOPITZ J, HUBER A, SATTELMAYER T, et al. Thermoacoustic stability analysis of an annular combustion chamber with acoustic low order modeling and validation against experiment[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air. Reno, US: ASME, 2008: 583-593.
    [9]
    杨甫江,郭志辉,付虓. 基于热声网络法的燃烧不稳定性分析研究[J]. 推进技术,2014,35(6): 822-829.

    YANG Fujiang,GUO Zhihui,FU Xiao. Analytic study on combustion instability with a thermoacoustic network model[J]. Journal of Propulsion Technology,2014,35(6): 822-829. (in Chinese)
    [10]
    ZHANG Zhihao,LIU Xiao,GONG Yaozhen,et al. Investigation on flame characteristics of industrial gas turbine combustor with different mixing uniformities[J]. Fuel,2020,259: 116297.1-116297.13.
    [11]
    YANG Yang. Large eddy simulation calculated flame dynamics of one F class gas turbine combustor[J]. IOP Conference Series:Materials Science and Engineering,2019,643(1): 012141.1-012141.12.
    [12]
    KREDIET H J,BECK C H,KREBS W,et al. Saturation mechanism of the heat release response of a premixed swirl flame using LES[J]. Proceedings of the Combustion Institute,2013,34(1): 1223-1230. doi: 10.1016/j.proci.2012.06.140
    [13]
    CAMPA G, COSATTO E, CAMPOREALE S. Thermoacoustic analysis of combustion instability importing RANS data[R]. Milan, Italy: COMSOL Conference, 2012.
    [14]
    CAMPA G, CAMPOREALE S M, COSATTO E, et al. Thermoacoustic analysis of combustion instability through a distributed flame response function[C]//Proceedings of the ASME Turbo Expo. Copenhagen, Denmark: ASME, 2012: 179-188.
    [15]
    CAMPOREALE S M,FORTUNATO B,CAMPA G. A finite element method for three-dimensional analysis of thermo-acoustic combustion instability[J]. Journal of Engineering for Gas Turbines and Power,2011,133(1): 011506.1-011506.13.
    [16]
    CAMPA G, CAMPOREALE S M, GUAUS A, et al. A quantitative comparison between a low order model and a 3D FEM code for the study of thermoacoustic combustion instabilities[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Vancouver, British Columbia, Canada: ASME, 2012: 859-869.
    [17]
    SHAW V, CLABBERS J, GUTMARK E. Augmentor combustion instability with COMSOL multiphysics[R]. Lausanne, Switzerland: COMSOL Conference, 2018
    [18]
    高贤智,何沛,冯晓星,等. 单扇区、扇形、全环燃烧室热声不稳定性试验和模拟研究[J]. 航空动力学报,2021,36(8): 1605-1613.

    GAO Xianzhi,HE Pei,FENG Xiaoxing,et al. Experimental and numerical investigation of thermo-acoustic instability in single-sector, sector and full annular combustors[J]. Journal of Aerospace Power,2021,36(8): 1605-1613. (in Chinese)
    [19]
    SILVA C F,NICOUD F,SCHULLER T,et al. Combining a Helmholtz solver with the flame describing function to assess combustion instability in a premixed swirled combustor[J]. Combustion and Flame,2013,160(9): 1743-1754. doi: 10.1016/j.combustflame.2013.03.020
    [20]
    NEZ R, FLESCA M G, MARCHAL D, et al. Experimental and numerical characterizations of acoustic damping rates in a coupled-cavity configuration[R]. Madrid, Spain: the 8th European Conference for Aeronautics and Aerospace Sciences, 2019.
    [21]
    TAMANAMPUDI G M R. Reduced order modeling and analysis of Combustion Instabilities[D]. West Lafayette, Indiana: Purdue University: 2015.
    [22]
    DOWLING A P. A kinematic model of a ducted flame[J]. Journal of Fluid Mechanics,1999,394: 51-72. doi: 10.1017/S0022112099005686
    [23]
    杨旸,余志健. 基于火焰传递函数的旋流预混火焰稳定性分析[J]. 燃气轮机技术,2021,34(1): 14-20.

    YANG Yang,YU Zhijian. Stability analysis of a swirling premixed combustor based on flame transfer functions[J]. Gas Turbine Technology,2021,34(1): 14-20. (in Chinese)
    [24]
    LIU Yunpeng,LI Jinghua,HAN Qixiang,et al. Study of combustion oscillation mechanism and flame image processing[J]. AIAA Journal,2019,57(2): 824-835. doi: 10.2514/1.J057614
    [25]
    吴江海, 吴健. 声固耦合有限元-无限元建模参数选取原则研究[R]. 昆明: 第18届船舶水下噪声学术讨论会论文集, 2021.
    [26]
    杨宇东,刘爱虢,王鑫慈,等. 燃油喷雾对某小发环形回流燃烧室燃烧特性影响[J]. 航空动力学报,2023,38(4): 830-839.

    YANG Yudong,LIU Aiguo,WANG Xinci,et al. Effect of fuel spray on combustion characteristics of a small engine annular reverse flow combustor[J]. Journal of Aerospace Power,2023,38(4): 830-839. (in Chinese)
    [27]
    BAE J,JEONG S,YOON Y. Effect of delay time on the combustion instability in a single-element combustor[J]. Acta Astronautica,2021,178: 783-792. doi: 10.1016/j.actaastro.2020.10.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (107) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return