Volume 37 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
FAN Yu, QIAN Xin, WU Yaguang, et al. Design approach of stiffeners for frequency shifting of rotors and stators in aero-engine[J]. Journal of Aerospace Power, 2022, 37(11):2376-2387 doi: 10.13224/j.cnki.jasp.20220258
Citation: FAN Yu, QIAN Xin, WU Yaguang, et al. Design approach of stiffeners for frequency shifting of rotors and stators in aero-engine[J]. Journal of Aerospace Power, 2022, 37(11):2376-2387 doi: 10.13224/j.cnki.jasp.20220258

Design approach of stiffeners for frequency shifting of rotors and stators in aero-engine

doi: 10.13224/j.cnki.jasp.20220258
  • Received Date: 2022-04-27
    Available Online: 2022-09-07
  • In order to suppress the flow-induced coupling vibration of rotor blades/bladed drum and stator caused by the close modal frequencies with the same nodal diameter between the rotor and stator, an ad-hoc forward design method based on displacement and strain energy density distribution was proposed to tailor the frequency margin, providing a solid theoretical basis for designing the gap of the frequency; and the stiffened area can be preliminarily determined through a single modal analysis, which significantly shortened the design cycles. The method was then applied to an industrial rotor/stator finite element model to improve the resonance margin. The influence of structural parameters of stiffeners on the modal characteristics of rotor and stator was investigated. The resonance margin of the dangerous mode increased from 3.47% to 10.56% by stiffening. The generality of this method is good, making it suitable for other types of engines.

     

  • loading
  • [1]
    PAPADAKIS L,HAUSER C. Experimental and computational appraisal of the shape accuracy of a thin-walled virole aero-engine casing manufactured by means of laser metal deposition[J]. Production Engineering,2017,11: 389-399. doi: 10.1007/s11740-017-0746-3
    [2]
    漆文凯,王向辉. 基于转静子耦合的组合压气机动力特性分析[J]. 航空发动机,2014,40(4): 46-50. doi: 10.13477/j.cnki.aeroengine.2014.04.009

    QI Wenkai,WANG Xianghui. Analysis on dynamic characteristics of combined compressor based on coupling of rotor and stator[J]. Aeroengine,2014,40(4): 46-50. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2014.04.009
    [3]
    马英群. 基于结构声强可视化的航空发动机转子-支承-机匣耦合系统振动能量传递特性研究[D]. 北京: 中国科学院大学, 2020.

    MA Yingqun. Investigation on vibration energy transmission characteristics of aero-engine rotor-support-casing coupling system based on visualization of structural acoustic intensity[D]. Beijing: Chinses Academy of Sciences, 2020. (in Chinese)
    [4]
    MARSHALL J. A review of aeroelasticity methods with emphasis on turbomachinery applications[J]. Journal of Fluids and Structures,1996,10(3): 237-267.
    [5]
    CLARK S T, KIELB R E, HALL K C. Developing a reduced-order model to understand non-synchronous vibration (NSV) in turbomachinery[R]. Copenhagen, Denmark: ASME Turbo Expo: Turbine Technical Conference and Exposition, 2012.
    [6]
    BRANDSTETTER,CHRISTOPH,JUENGST,et al. Measurements of radial vortices, spill forward, and vortex breakdown in a transonic compressor[J]. Journal of Turbomachinery,2018,140(6): 1-14.
    [7]
    STAPELFELDT S,BRANDSTETTER C. Non-synchronous vibration in axial compressors: lock-in mechanism and semi-analytical model[J]. Journal of Sound and Vibration,2020,488: 115649.1-115649.20.
    [8]
    LEGRAND M,PIERRE C,CARTRAUD P,et al. Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction[J]. Journal of Sound and Vibration,2009,319(1/2): 366-391.
    [9]
    LEGRAND M,BATAILLY A,MAGNAIN B,et al. Full three-dimensional investigation of structural contact interactions in turbomachines[J]. Journal of Sound and Vibration,2012,331(11): 2578-2601. doi: 10.1016/j.jsv.2012.01.017
    [10]
    王俨剀,王理,廖明夫,等. 双转子发动机转子-机匣碰摩振动特征研究[J]. 机械科学与技术,2014,33(4): 614-620. doi: 10.13433/j.cnki.1003-8728.2014.04.022

    WANG Yankai,WANG Li,LIAO Mingfu,et al. Exploring vibration characteristics of dual-rotor engine’s rotor-to-case rub-impact[J]. Mechanical Science and Technology for Aerospace Engineering,2014,33(4): 614-620. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2014.04.022
    [11]
    MA Hui,LU Yang,WU Zhiyuan,et al. Vibration response analysis of a rotational shaft-disk-blade system with blade-tip rubbing[J]. International Journal of Mechanical Sciences,2016,107: 110-125. doi: 10.1016/j.ijmecsci.2015.12.026
    [12]
    HONG Jie,YU Pingchao,MA Yanhong,et al. Investigation on nonlinear lateral-torsional coupled vibration of a rotor system with substantial unbalance[J]. Chinese Journal of Aeronautics,2020,33(6): 1642-1660. doi: 10.1016/j.cja.2020.02.023
    [13]
    SCHMIECHEN P. Travelling wave speed coincidence[D]. London,UK: Technology and Medicine University of London, 1997.
    [14]
    SALVAT N,BATAILLY A,LEGRAND M. Two-dimensional modeling of unilateral contact-induced shaft processional motions in bladed-disk/casing systems[J]. International Journal of Non-Linear Mechanics,2016,78(4): 90-104.
    [15]
    付才高, 郑大平, 欧圆霞, 等.《航空发动机设计手册》: 第19册 转子动力学及整机振动[M]. 北京: 航空工业出版社, 2000.
    [16]
    米大海,杨睿,周亮,等. 以频率为目标的加筋平板结构优化设计研究[J]. 机械强度,2013,35(2): 179-182.

    MI Dahai,YANG Rui,ZHOU Liang,et al. Structural frequency optimal design of stiffened plate[J]. Journal of Mechanical Strength,2013,35(2): 179-182. (in Chinese)
    [17]
    PENG S,KAPANIA R K,DONG C. Finite element approach to the static, vibration and buckling analysis of curvilinearly stiffened plates[J]. AIAA Journal,2015,53(5): 1319-1335.
    [18]
    刘双燕,涂玉倩,苗应刚,等. 筋的截面形状对薄壁结构振动疲劳性能的影响[J]. 航空工程进展,2017,8(2): 190-198.

    LIU Shuangyan,TU Yuqian,MIAO Yinggang,et al. Effects of stiffeners’ cross section shape on thin wall structures’ vibration fatigue property[J]. Advances in Aeronautical Science and Engineering,2017,8(2): 190-198. (in Chinese)
    [19]
    邓晓龙,许敏,陈剑,等. 发动机缸体固有频率对加强筋厚度的灵敏度分析[J]. 内燃机工程,2007,28(2): 68-71. doi: 10.3969/j.issn.1000-0925.2007.02.017

    DENG Xiaolong,XU Min,CHEN Jian,et al. Analysis of sensitivity of natural frequency to the rib thickness of engine cylinder block[J]. Chinese Internal Combustion Engine Engineering,2007,28(2): 68-71. (in Chinese) doi: 10.3969/j.issn.1000-0925.2007.02.017
    [20]
    OBIED H H,SHAREEF M M S. Free vibration analysis of stiffened cylinder shell[J]. International Journal of Energy and Environment,2015,6(3): 273-286.
    [21]
    LIU Z S,HANSEN J S,OGUAMANAM D C D. Eigenvalue sensitivity analysis of stiffened plates with respect to the location of stiffeners[J]. Structural optimization,1998,16(2/3): 155-161.
    [22]
    宋军强,汤丽丽,潘慕绚,等. 航空发动机分布式控制拓扑结构优化方法[J]. 航空动力学报,2016,31(6): 1435-1440. doi: 10.13224/j.cnki.jasp.2016.06.020

    SONG Junqiang,TANG Lili,PAN Muxuan,et al. Aero-engine distributed control system topology optimization method[J]. Journal of Aerospace Power,2016,31(6): 1435-1440. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.06.020
    [23]
    李超,金福艺,张卫浩. 航空发动机转子结构布局优化设计方法[J]. 北京航空航天大学学报,2019,45(2): 266-276.

    LI Chao,JIN Fuyi,ZHANG Weihao. Optimized design method of aero-engine rotor structure layout[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(2): 266-276. (in Chinese)
    [24]
    陈鼎欣, 简卫斌, 邓敬亮. 航空发动机整体叶盘结构刚度的多目标优化[J]. 航空发动机, 2019, 45(5): 31-35.

    CHEN Dingxin, JIAN Weibin, DENG Jingliang. Multi-objective optimization of structural stiffness of aeroengine multistage-blisk[J]. Aeroengine, 2019, 45(5): 31-35. (in Chinese)
    [25]
    倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1989.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (229) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return