Volume 39 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
CHEN Xiangxiang, SHI Zhiyu, ZHAO Zongshuang. Instantaneous modal parameter identification based on parameter optimized variational mode decomposition[J]. Journal of Aerospace Power, 2024, 39(4):20220301 doi: 10.13224/j.cnki.jasp.20220301
Citation: CHEN Xiangxiang, SHI Zhiyu, ZHAO Zongshuang. Instantaneous modal parameter identification based on parameter optimized variational mode decomposition[J]. Journal of Aerospace Power, 2024, 39(4):20220301 doi: 10.13224/j.cnki.jasp.20220301

Instantaneous modal parameter identification based on parameter optimized variational mode decomposition

doi: 10.13224/j.cnki.jasp.20220301
  • Received Date: 2022-05-03
    Available Online: 2023-11-20
  • In view of the problem of determining the modal number and quadratic penalty factor of variational mode decomposition (VMD), a parameter optimization algorithm based on orthogonality index, energy ratio and variational energy entropy (VEE) was proposed. For the decomposed single component signal, the instantaneous frequency identification method based on polynomial chirplet transform (PCT) and the instantaneous damping ratio identification method based on energy method were developed. The simulation research of 3-DOF (degree of freedom) time-varying structure and the experimental research of time-varying steel beam were carried out. The results showed that the optimized VMD method can accurately separate the time-varying components of the multi-DOF system with strong anti-noise performance. The instantaneous frequency identification method based on PCT had strong time-varying frequency tracking performance, strong anti-noise ability, and high accuracy of time-varying frequency identification, and the average error was less than 1%. The energy method can accurately identify the instantaneous damping ratio of the structure with obvious anti-noise advantage, and the identification error was maintained at about 10%.

     

  • loading
  • [1]
    于开平,庞世伟,赵婕. 时变线性/非线性结构参数识别及系统辨识方法研究进展[J]. 科学通报,2009,54(20): 3147-3156. YU Kaiping,PANG Shiwei,ZHAO Jie. Advances in method of time-varying linear/nonlinear structural system identification and parameter estimate[J]. Chinese Science Bulletin,2009,54(20): 3147-3156. (in Chinese doi: 10.1360/972008-2471

    YU Kaiping, PANG Shiwei, ZHAO Jie. Advances in method of time-varying linear/nonlinear structural system identification and parameter estimate[J]. Chinese Science Bulletin, 2009, 54(20): 3147-3156. (in Chinese) doi: 10.1360/972008-2471
    [2]
    赵晓平,赵秀莉,侯荣涛,等. 一种新的旋转机械升降速阶段振动信号的瞬时频率估计算法[J]. 机械工程学报,2011,47(7): 103-108. ZHAO Xiaoping,ZHAO Xiuli,HOU Rongtao,et al. A new method for instantaneous frequency estimation of run-up or run-down vibration signal for rotating machinery[J]. Journal of Mechanical Engineering,2011,47(7): 103-108. (in Chinese doi: 10.3901/JME.2011.07.103

    ZHAO Xiaoping, ZHAO Xiuli, HOU Rongtao, et al. A new method for instantaneous frequency estimation of run-up or run-down vibration signal for rotating machinery[J]. Journal of Mechanical Engineering, 2011, 47(7): 103-108. (in Chinese) doi: 10.3901/JME.2011.07.103
    [3]
    KIM B,KONG S H,KIM S. Low computational enhancement of STFT-based parameter estimation[J]. IEEE Journal of Selected Topics in Signal Processing,2015,9(8): 1610-1619. doi: 10.1109/JSTSP.2015.2465310
    [4]
    续秀忠,张志谊,华宏星,等. 结构时变模态参数辨识的时频分析方法[J]. 上海交通大学学报,2003,37(1): 122-126. XU Xiuzhong,ZHANG Zhiyi,HUA Hongxing,et al. Time-varying modal parameter identification with time-frequency analysis methods[J]. Journal of Shanghai Jiao Tong University,2003,37(1): 122-126. (in Chinese doi: 10.3321/j.issn:1006-2467.2003.01.033

    XU Xiuzhong, ZHANG Zhiyi, HUA Hongxing, et al. Time-varying modal parameter identification with time-frequency analysis methods[J]. Journal of Shanghai Jiao Tong University, 2003, 37(1): 122-126. (in Chinese) doi: 10.3321/j.issn:1006-2467.2003.01.033
    [5]
    KARLSSON S,YU J,AKAY M. Time-frequency analysis of myoelectric signals during dynamic contractions: a comparative study[J]. IEEE Transactions on Bio-Medical Engineering,2000,47(2): 228-238. doi: 10.1109/10.821766
    [6]
    GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing,2013,61(16): 3999-4010. doi: 10.1109/TSP.2013.2265222
    [7]
    许鑫,史治宇,STASZEWSKI W J,等. 基于加速度响应连续小波变换的线性时变结构瞬时频率识别[J]. 振动与冲击,2012,31(20): 166-171. XU Xin,SHI Zhiyu,STASZEWSKI W J,et al. Instantaneous frequencies identification of a linear time-varying structure using continuous wavelet transformation of free decay acceleration response[J]. Journal of Vibration and Shock,2012,31(20): 166-171. (in Chinese

    XU Xin, SHI Zhiyu, STASZEWSKI W J, et al. Instantaneous frequencies identification of a linear time-varying structure using continuous wavelet transformation of free decay acceleration response[J]. Journal of Vibration and Shock, 2012, 31(20): 166-171. (in Chinese)
    [8]
    杨武,刘莉,周思达,等. 前后向时间序列模型联合估计的时变结构模态参数辨识[J]. 振动与冲击,2015,34(3): 129-135. YANG Wu,LIU Li,ZHOU Sida,et al. Modal parameter identification of time-varying structures using a forward-backward time series model based on joint estimation[J]. Journal of Vibration and Shock,2015,34(3): 129-135. (in Chinese

    YANG Wu, LIU Li, ZHOU Sida, et al. Modal parameter identification of time-varying structures using a forward-backward time series model based on joint estimation[J]. Journal of Vibration and Shock, 2015, 34(3): 129-135. (in Chinese)
    [9]
    ZHOU Haotian,YU Kaiping,CHEN Yushu,et al. Time-varying modal parameters identification by subspace tracking algorithm and its validation method[J]. Shock and Vibration,2018,2018: 1-12.
    [10]
    SHI Z Y,LAW S S,XU X. Identification of linear time-varying mdof dynamic systems from forced excitation using Hilbert transform and EMD method[J]. Journal of Sound and Vibration,2009,321(3/4/5): 572-589.
    [11]
    FELDMAN M. Time-varying vibration decomposition and analysis based on the Hilbert transform[J]. Journal of Sound and Vibration,2006,295(3/4/5): 518-530.
    [12]
    向丹,岑健. 基于EMD熵特征融合的滚动轴承故障诊断方法[J]. 航空动力学报,2015,30(5): 1149-1155. XIANG Dan,CEN Jian. Method of roller bearing fault diagnosis based on feature fusion of EMD entropy[J]. Journal of Aerospace Power,2015,30(5): 1149-1155. (in Chinese

    XIANG Dan, CEN Jian. Method of roller bearing fault diagnosis based on feature fusion of EMD entropy[J]. Journal of Aerospace Power, 2015, 30(5): 1149-1155. (in Chinese)
    [13]
    DRAGOMIRETSKIY K,ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2014,62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [14]
    CHEN Shiqian,DONG Xingjian,PENG Zhike,et al. Nonlinear chirp mode decomposition: a variational method[J]. IEEE Transactions on Signal Processing,2017,65(22): 6024-6037. doi: 10.1109/TSP.2017.2731300
    [15]
    刘景良,郑锦仰,林友勤,等. 变分模态分解和同步挤压小波变换识别时变结构瞬时频率[J]. 振动与冲击,2018,37(20): 24-31. LIU Jingliang,ZHENG Jinyang,LIN Youqin,et al. Instantaneous frequency identification of time-varying structures using variational mode decomposition and synchrosqueezing wavelet transform[J]. Journal of Vibration and Shock,2018,37(20): 24-31. (in Chinese

    LIU Jingliang, ZHENG Jinyang, LIN Youqin, et al. Instantaneous frequency identification of time-varying structures using variational mode decomposition and synchrosqueezing wavelet transform[J]. Journal of Vibration and Shock, 2018, 37(20): 24-31. (in Chinese)
    [16]
    LIU Wei,CAO Siyuan,WANG Zhiming,et al. Spectral decomposition for hydrocarbon detection based on VMD and teager-kaiser energy[J]. IEEE Geoscience and Remote Sensing Letters,2017,14(4): 539-543. doi: 10.1109/LGRS.2017.2656158
    [17]
    孙灿飞,王友仁,沈勇,等. 基于参数自适应变分模态分解的行星齿轮箱故障诊断[J]. 航空动力学报,2018,33(11): 2756-2765. SUN Canfei,WANG Youren,SHEN Yong,et al. Fault diagnosis of planetary gearbox based on adaptive parameter variational mode decomposition[J]. Journal of Aerospace Power,2018,33(11): 2756-2765. (in Chinese

    SUN Canfei, WANG Youren, SHEN Yong, et al. Fault diagnosis of planetary gearbox based on adaptive parameter variational mode decomposition[J]. Journal of Aerospace Power, 2018, 33(11): 2756-2765. (in Chinese)
    [18]
    PENG Z K,MENG G,CHU F L,et al. Polynomial chirplet transform with application to instantaneous frequency estimation[J]. IEEE Transactions on Instrumentation and Measurement,2011,60(9): 3222-3229. doi: 10.1109/TIM.2011.2124770
    [19]
    YANG Yang,ZHANG Wenming,PENG Zhike,et al. Multicomponent signal analysis based on polynomial chirplet transform[J]. IEEE Transactions on Industrial Electronics,2013,60(9): 3948-3956. doi: 10.1109/TIE.2012.2206331
    [20]
    张杰,史治宇,赵宗爽. 基于线调频自适应分解的时变系统瞬时模态参数识别[J]. 振动与冲击,2020,39(22): 103-109,118. ZHANG Jie,SHI Zhiyu,ZHAO Zongshuang. Instantaneous modal parameter identification of time-varying systems based on adaptive chirplet decomposition[J]. Journal of Vibration and Shock,2020,39(22): 103-109,118. (in Chinese doi: 10.13465/j.cnki.jvs.2020.22.015

    ZHANG Jie, SHI Zhiyu, ZHAO Zongshuang. Instantaneous modal parameter identification of time-varying systems based on adaptive chirplet decomposition[J]. Journal of Vibration and Shock, 2020, 39(22): 103-109, 118. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.22.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (60) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return