Volume 39 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
LI Chang, DENG Shuangjiu, GAO Hexin, et al. Significance of 40Cr laser quenching process parameters considering transformation induced plasticity[J]. Journal of Aerospace Power, 2024, 39(4):20220303 doi: 10.13224/j.cnki.jasp.20220303
Citation: LI Chang, DENG Shuangjiu, GAO Hexin, et al. Significance of 40Cr laser quenching process parameters considering transformation induced plasticity[J]. Journal of Aerospace Power, 2024, 39(4):20220303 doi: 10.13224/j.cnki.jasp.20220303

Significance of 40Cr laser quenching process parameters considering transformation induced plasticity

doi: 10.13224/j.cnki.jasp.20220303
  • Received Date: 2022-05-03
    Available Online: 2023-11-20
  • The multi-field coupling instantaneous evolution law of laser quenching process was quantitatively revealed, then the significance analysis of 40Cr laser quenching process parameters was carried out. Based on the calculation of phase diagram (CALPHAD) method, the temperature changes physical properties of the material were calculated, and the coupled numerical model of 40Cr gear steel during laser quenching was established. Numerical calculations of the transient temperature, phase transition, and stress distribution of 40Cr laser quenching revealed the interaction mechanism between phase transition behavior and plastic stress. Axio Vert.A1 microscope, scanning electron microscope (SEM), super depth of field 3D microscope, and microhardness tester were used for analysis. The significant effects of laser radius, laser power, and scanning speed on quenching quality were analyzed based on orthogonal experiments. The results showed that the significant process parameters affecting the maximum temperature and phase transformation depth were spot diameter, scanning speed and laser power. The distribution of residual stress was “hump”, and the significant process parameters affecting the residual tensile stress were spot diameter, laser power and scanning speed. This research provides an essential theoretical basis for effectively controlling residual quenching stress and optimizing quenching process parameters.

     

  • loading
  • [1]
    CHEN Zhaoyun,ZHOU Guijuan,CHEN Zhonghua. Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching[J]. Materials Science and Engineering: A,2012,534: 536-541. doi: 10.1016/j.msea.2011.12.004
    [2]
    SARVESTANI E S,REZAEIZADEH M,JOMEHZADEH E,et al. Early detection of industrial-scale gear tooth surface pitting using vibration analysis[J]. Journal of Failure Analysis and Prevention,2020,20(3): 768-788. doi: 10.1007/s11668-020-00874-1
    [3]
    张国祥,姚东伟. 激光淬火基体对镀铬层界面剪切强度的影响[J]. 激光技术,2012,36(4): 527-531. ZHANG Guoxiang,YAO Dongwei. Effect of laser-quenching substrate on interfacial shear strength of chromium plated coatings[J]. Laser Technology,2012,36(4): 527-531. (in Chinese

    ZHANG Guoxiang, YAO Dongwei. Effect of laser-quenching substrate on interfacial shear strength of chromium plated coatings[J]. Laser Technology, 2012, 36(4): 527-531. (in Chinese)
    [4]
    郭卫,张汉杰,柴蓉霞. 27SiMn钢表面激光淬火数值模拟及实验验证[J]. 应用激光,2019,39(3): 482-489. GUO Wei,ZHANG Hanjie,CHAI Rongxia. Numerical simulation and experimental verification of laser quenching on 27SiMn steel surface[J]. Applied Laser,2019,39(3): 482-489. (in Chinese doi: 10.14128/j.cnki.al.20193903.482

    GUO Wei, ZHANG Hanjie, CHAI Rongxia. Numerical simulation and experimental verification of laser quenching on 27SiMn steel surface[J]. Applied Laser, 2019, 39(3): 482-489. (in Chinese) doi: 10.14128/j.cnki.al.20193903.482
    [5]
    LESYK D A,MARTINEZ S,MORDYUK B N,et al. Combining laser transformation hardening and ultrasonic impact strain hardening for enhanced wear resistance of AISI 1045 steel[J]. Wear,2020,462/463: 203494. doi: 10.1016/j.wear.2020.203494
    [6]
    BIRYUKOV V P,SOKOLOV S N,SAVIN A P,et al. Influence of laser quenching modes on tribological characteristics of 40Cr steel[J]. IOP Conference Series: Materials Science and Engineering,2020,996(1): 012004. doi: 10.1088/1757-899X/996/1/012004
    [7]
    陈正威,李昌,高兴,等. 考虑晶粒不均匀性的不锈钢激光淬火数值模拟[J]. 中国激光,2021,48(10): 1002109. CHEN Zhengwei,LI Chang,GAO Xing,et al. Numerical simulation on laser quenching of stainless steels with grain heterogeneity[J]. Chinese Journal of Lasers,2021,48(10): 1002109. (in Chinese doi: 10.3788/CJL202148.1002109

    CHEN Zhengwei, LI Chang, GAO Xing, et al. Numerical simulation on laser quenching of stainless steels with grain heterogeneity[J]. Chinese Journal of Lasers, 2021, 48(10): 1002109. (in Chinese) doi: 10.3788/CJL202148.1002109
    [8]
    MUTHUKUMARAN G,DINESH BABU P. Laser transformation hardening of various steel grades using different laser types[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2021,43(2): 103. doi: 10.1007/s40430-021-02854-4
    [9]
    SIDI-AHMED K,MAOUCHE B,GABI Y,et al. Numerical simulations and experimental investigation of laser hardening depth investigation via 3MA-eddy current technique[J]. Journal of Magnetism and Magnetic Materials,2022,550: 169046. doi: 10.1016/j.jmmm.2022.169046
    [10]
    罗心磊,刘美红,黎振华,等. 不同热源模型对选区激光熔化18Ni300温度场计算结果的影响[J]. 中国激光,2021,48(14): 1402005. LUO Xinlei,LIU Meihong,LI Zhenhua,et al. Effect of different heat-source models on calculated temperature field of selective laser melted 18Ni300[J]. Chinese Journal of Lasers,2021,48(14): 1402005. (in Chinese doi: 10.3788/CJL202148.1402005

    LUO Xinlei, LIU Meihong, LI Zhenhua, et al. Effect of different heat-source models on calculated temperature field of selective laser melted 18Ni300[J]. Chinese Journal of Lasers, 2021, 48(14): 1402005. (in Chinese) doi: 10.3788/CJL202148.1402005
    [11]
    COLOMBINI E,SOLA R,PARIGI G,et al. Laser quenching of ionic nitrided steel: effect of process parameters on microstructure and optimization[J]. Metallurgical and Materials Transactions A,2014,45(12): 5562-5573. doi: 10.1007/s11661-014-2490-z
    [12]
    DA SILVA S L E F. Newton’s cooling law in generalised statistical mechanics[J]. Physica A: Statistical Mechanics and Its Applications,2021,565: 125539. doi: 10.1016/j.physa.2020.125539
    [13]
    孙文强. 5CrNiMo钢激光表面淬火温度场数值模拟及硬化层均匀性研究[D]. 天津: 天津理工大学,2013. SUN Wenqiang. Simulation of temperature field during laser surface quenching and analysis of the homogeneity of hardened layer for 5CrNiMo[D]. Tianjin: Tianjin University of Technology,2013. (in Chinese

    SUN Wenqiang. Simulation of temperature field during laser surface quenching and analysis of the homogeneity of hardened layer for 5CrNiMo[D]. Tianjin: Tianjin University of Technology, 2013. (in Chinese)
    [14]
    刘玉. 中碳钢淬火应力分布的测定和有限元模拟[D]. 上海: 上海交通大学,2017. LIU Yu. Measurements and finite element simulation of quenching stress distribution in medium carbon steels[D]. Shanghai: Shanghai Jiao Tong University,2017. (in Chinese

    LIU Yu. Measurements and finite element simulation of quenching stress distribution in medium carbon steels[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)
    [15]
    KOHOUT J. Simple and precise description of the transformation kinetics and final structure of dual phase steels[J]. Materials,2021,14(7): 1781. doi: 10.3390/ma14071781
    [16]
    BUBNOFF D V,CARVALHO M M O,XAVIER C R,et al. Evaluation of martensite fraction in 1026 steel by infrared thermography combined with the koistinen-marburger model[J]. Materials Science Forum,2016,869: 411-415. doi: 10.4028/www.scientific.net/MSF.869.411
    [17]
    LEBLOND J B,DEVAUX J,DEVAUX J C. Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases[J]. International Journal of Plasticity,1989,5(6): 551-572. doi: 10.1016/0749-6419(89)90001-6
    [18]
    KHANNA K,GUPTA V K,NIGAM S P. Creep analysis in functionally graded rotating disc using tresca criterion and comparison with von-mises criterion[J]. Materials Today: Proceedings,2017,4(2): 2431-2438. doi: 10.1016/j.matpr.2017.02.094
    [19]
    MOCHIZUKI M,HAYASHI M,HATTORI T. Numerical analysis of welding residual stress and its verification using neutron diffraction measurement[J]. Journal of Engineering Materials and Technology,2000,122(1): 98-103. doi: 10.1115/1.482772
    [20]
    BADRISH C A,KOTKUNDE N,MAHALLE G,et al. Analysis of hot anisotropic tensile flow stress and strain hardening behavior for inconel 625 alloy[J]. Journal of Materials Engineering and Performance,2019,28(12): 7537-7553. doi: 10.1007/s11665-019-04475-4
    [21]
    TABOR D. The hardness of metals[M]. Oxford,UK: Oxford University Press,2000.
    [22]
    边舫,苏国跃,孔凡亚,等. Inconel718合金的加工硬化行为[J]. 有色金属,2005(1): 1-3. BIAN Fang,SU Guoyue,KONG Fanya,et al. Work hardening behavior of inconel 718[J]. Nonferrous Metals,2005(1): 1-3. (in Chinese

    BIAN Fang, SU Guoyue, KONG Fanya, et al. Work hardening behavior of inconel 718[J]. Nonferrous Metals, 2005(1): 1-3. (in Chinese)
    [23]
    路彦君. 镍基高温合金Inconel718微铣削残余应力与加工硬化研究[D]. 大连: 大连理工大学,2016. LU Yanjun. Researches on residual stress and work hardening on micro-milling nickel-base superalloy Inconel718[D]. Dalian: Dalian University of Technology,2016. (in Chinese

    LU Yanjun. Researches on residual stress and work hardening on micro-milling nickel-base superalloy Inconel718[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (38) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return