Volume 39 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
DAN Zhihong, ZHANG Song, ZHANG Hehong, et al. Robust cascade LADRC technology for flight altitude simulation of high altitude cell[J]. Journal of Aerospace Power, 2024, 39(4):20220343 doi: 10.13224/j.cnki.jasp.20220343
Citation: DAN Zhihong, ZHANG Song, ZHANG Hehong, et al. Robust cascade LADRC technology for flight altitude simulation of high altitude cell[J]. Journal of Aerospace Power, 2024, 39(4):20220343 doi: 10.13224/j.cnki.jasp.20220343

Robust cascade LADRC technology for flight altitude simulation of high altitude cell

doi: 10.13224/j.cnki.jasp.20220343
  • Received Date: 2022-05-16
    Available Online: 2023-09-12
  • With strong nonlinearity, high uncertainty and strong external disturbance for flight altitude simulation of altitude test facility, a robust cascade linear active disturbance rejection control (LADRC) algorithm via the reduced order linear extended state observer (RLESO) was proposed. In particular, the main characteristics and control issues of the controlled plant were analyzed, and the generalized controlled plant can be included by the butterfly valve position loop and flight altitude loop. The RLESO and corresponding controller were designed for the two loops respectively, meanwhile the cascade control system was constructed. The robust cascade LADRC was realized in the simulation environment and compared with the classical PID control scheme. When the engine was subject to the thrust transient test, the maximum fluctuation value of the controlled pressure was reduced from 3.5 kPa to 0.8 kPa. This indicated that the robust cascade LADRC technology via RLESO can significantly improve the dynamic control quality. The ideal robust control performance and anti-disturbance ability for flight altitude simulation were obtained.

     

  • loading
  • [1]
    侯敏杰. 高空模拟试验技术[M]. 北京: 航空工业出版社, 2014.
    [2]
    MONTGOMERY P A, BURDETTE R, WILHITE L, et al. Modernization of a turbine engine test facility utilizing a real-time facility model and simulation[R]. ASME Paper 2001-GT-0573, 2001.
    [3]
    LUPPOLD R, MEISNER R, NORTON J. Design and evaluation of an auto-tuning control system for an altitude test facility[R]. ASME Paper 99-GT-061, 1999
    [4]
    DAVIS M,MONTGOMERY P. A flight simulation vision for aeropropulsion altitude ground test facilities[J]. Journal of Engineering for Gas Turbines and Power,2005,127(1): 8-17. doi: 10.1115/1.1806452
    [5]
    GARRARD D, SEELY J, ABEL L. An analysis of alternatives to provide a varying Mach number test capability at APTU[R]. AIAA 2006-8044, 2006.
    [6]
    BIERKAMP J, KÖCKE S, STAUDACHER S, et al. Influence of ATF dynamics and controls on jet engine performance[R]. ASME Paper GT2007-27586, 2007.
    [7]
    WEISSER M, BOLK S, STAUDACHER S. Hard-in-the-loop-simulation of a feed forward multivariable controller for the altitude test facility at the university of stuttgart[R]. Stuttgart, Germany: Deutscher Luft-und Raumfahrt Kongress, 2013.
    [8]
    钱秋朦,但志宏,张松,等. 高空台进排气控制系统软件设计[J]. 燃气涡轮试验与研究,2019,32(4): 27-31, 36.

    QIAN Qiumeng,DAN Zhihong,ZHANG Song,et al. Software design of the simulated altitude test facility intake and exhaust control system[J]. Gas Turbine Experiment and Research,2019,32(4): 27-31, 36. (in Chinese)
    [9]
    赵涌, 侯敏杰, 张松, 等. 航空发动机高空模拟试验排气环境压力模糊控制技术研究[J]. 燃气涡轮试验与研究, 2010, 23(3): 14-17, 55.

    ZHAO Yong, HOU Minjie, ZHANG Song, et al. Investigation of exhaust pressure fuzzy control technology in aero-engine altitude simulation test[J]. Gas Turbine Experiment and Research, 2010, 23(3): 14-17, 55. (in Chinese)
    [10]
    高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12): 1498-1510.

    GAO Zhiqiang. On the foundation of active disturbance rejection control[J]. Control Theory & Applications, 2013, 30(12): 1498-1510. (in Chinese)
    [11]
    李向阳, 高志强. 抗扰控制中的不变性原理[J/OL]. [2022-09-10]. http: //kns.cnki.net/kcms/detail/44.1240.TP.20190712.0934.012.html.
    [12]
    吴真,曹东海,熊官送. 基于滑模变结构和扩张状态观测器的电动舵机复合控制方法[J]. 导航定位与授时,2019,6(2): 46-51.

    WU Zhen,CAO Donghai,XIONG Guansong. Electromechanical actuator control method based on sliding mode variable structure and extended state observer[J]. Navigation Positioning and Timing,2019,6(2): 46-51. (in Chinese)
    [13]
    韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23.

    HAN Jingqing. Auto-disturbances-rejection controller and its applications[J]. Control and Decision, 1998, 13(1): 19-23. (in Chinese)
    [14]
    韩京清. 自抗扰控制技术[J]. 前沿科学,2007,1(1): 24-31.

    HAN Jingqing. Auto disturbances rejection control technique[J]. Frontier Science,2007,1(1): 24-31. (in Chinese)
    [15]
    韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
    [16]
    黄一,薛文超,赵春哲. 自抗扰控制纵横谈[J]. 系统科学与数学,2011,31(9): 1111-1129.

    HUANG Yi,XUE Wenchao,ZHAO Chunzhe. Active disturbance rejection control: methodology and theoretical analysis[J]. Journal of Systems Science and Mathematical Sciences,2011,31(9): 1111-1129. (in Chinese)
    [17]
    黄一,薛文超. 自抗扰控制: 思想、应用及理论分析[J]. 系统科学与数学,2012,32(10): 1287-1307.

    HUANG Yi,XUE Wenchao. Active disturbance rejection control: methodology, applications and theoretical analysis[J]. Journal of Systems Science and Mathematical Sciences,2012,32(10): 1287-1307. (in Chinese)
    [18]
    TIAN Gang, GAO Zhiqiang. Frequency response analysis of active disturbance rejection based control system[C]//2007 IEEE International Conference on Control Applications. Piscataway, US: IEEE, 2007: 1595-1599.
    [19]
    张海波,孙健国,孙立国. 一种涡轴发动机转速抗扰控制器设计及应用[J]. 航空动力学报,2010,25(4): 943-950.

    ZHANG Haibo,SUN Jianguo,SUN Liguo. Design and application of a disturbance rejection rotor speed control method for turbo-shaft engines[J]. Journal of Aerospace Power,2010,25(4): 943-950. (in Chinese)
    [20]
    陈森,薛文超,黄一. 推力矢量飞行器的自抗扰控制设计及控制分配[J]. 控制理论与应用,2018,35(11): 1591-1600.

    CHEN Sen,XUE Wenchao,HUANG Yi. Active disturbance rejection control and control allocation for thrust-vectored aircraft[J]. Control Theory & Applications,2018,35(11): 1591-1600. (in Chinese)
    [21]
    张和洪, 谢晏清, 王娟, 等. Levant微分器参数整定算法及在高空台系统的应用[J]. 控制理论与应用, 2023, 40(10): 1831-1838.

    ZHANG Hehong, XIE Yanqing, WANG Juan,et al. Parameter tuning algorithm for levant’s differentiator and its application in flight environment simulation control system[J]. Control Theory & Applications, 2023, 40(10): 1831-1838. (in Chinese)
    [22]
    GAO Zhiqiang. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference. Piscataway, US: IEEE, 2003: 4989-4996.
    [23]
    GAO Zhiqiang. Active disturbance rejection control: a paradigm shift in feedback control system design[C]//2006 American Control Conference. Piscataway, US: IEEE, 2006: 2399-2405.
    [24]
    薛文超. 自抗扰控制的理论研究[D]. 北京: 中国科学院大学, 2012.

    XUE Wenchao. Theoretical study on active disturbance rejection control[D]. Beijing: University of Chinese Academy of Sciences, 2012. (in Chinese)
    [25]
    李杰,齐晓慧,万慧,等. 自抗扰控制: 研究成果总结与展望[J]. 控制理论与应用,2017,34(3): 281-295.

    LI Jie,QI Xiaohui,WAN Hui,et al. Active disturbance rejection control: theoretical results summary and future researches[J]. Control Theory & Applications,2017,34(3): 281-295. (in Chinese)
    [26]
    陈增强,孙明玮,杨瑞光. 线性自抗扰控制器的稳定性研究[J]. 自动化学报,2013,39(5): 574-580.

    CHEN Zengqiang,SUN Mingwei,YANG Ruiguang. On the stability of linear active disturbance rejection control[J]. Acta Automatica Sinica,2013,39(5): 574-580. (in Chinese)
    [27]
    吴瑕,李晓栋,王思远,等. 基于RLESO的高超声速巡航飞行器跟踪控制器设计[J]. 控制与信息技术,2018(6): 85-90.

    WU Xia,LI Xiaodong,WANG Siyuan,et al. Tracking controller design for hypersonic cruise vehicle based on RLESO[J]. Control and Information Technology,2018(6): 85-90. (in Chinese)
    [28]
    但志宏,张松,钱秋朦,等. 基于前馈反馈复合控制策略的高空舱高精度电液伺服控制技术[J]. 燃气涡轮试验与研究,2019,32(6): 1-5, 19.

    DAN Zhihong,ZHANG Song,QIAN Qiumeng,et al. High precision electro-hydraulic control in altitude test facility based on feedforward-feedback compound strategy[J]. Gas Turbine Experiment and Research,2019,32(6): 1-5, 19. (in Chinese)
    [29]
    裴希同,张松,但志宏,等. 高空台飞行环境模拟系统数字建模与仿真研究[J]. 推进技术,2019,40(5): 1144-1152.

    PEI Xitong,ZHANG Song,DAN Zhihong,et al. Study on digital modeling and simulation of altitude test facility flight environment simulation system[J]. Journal of Propulsion Technology,2019,40(5): 1144-1152. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return