Volume 39 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
XU Legen, MAO Junkui, LIANG Fengli, et al. Performance and aviation application of direct ammonia fuel SOFC-GT hybrid system[J]. Journal of Aerospace Power, 2024, 39(4):20220346 doi: 10.13224/j.cnki.jasp.20220346
Citation: XU Legen, MAO Junkui, LIANG Fengli, et al. Performance and aviation application of direct ammonia fuel SOFC-GT hybrid system[J]. Journal of Aerospace Power, 2024, 39(4):20220346 doi: 10.13224/j.cnki.jasp.20220346

Performance and aviation application of direct ammonia fuel SOFC-GT hybrid system

doi: 10.13224/j.cnki.jasp.20220346
  • Received Date: 2022-05-18
    Available Online: 2023-08-03
  • A simulation model of the solid oxide fuel cells-gas turbine (SOFC-GT) hybrid power system on the basis of direct ammonia fuel was established, to developed an efficient power generation system with a high power-mass ratio optimized by architecture, and studied the effects of fuel utilization and system fuel allocation on system power allocation, mass of various subcomponents, and energy losses. Then, the performance of the established SOFC-GT hybrid system was evaluated by changing parameters such as the compressor pressure ratio, fuel flow rate and air flow rate. The power-mass ratio analysis of the system was also carried out under the optimal performance condition. The simulation results showed that, the net power generation efficiency of the system can reach 56.85%, and the exergy efficiency can reach 50.71% at the design conditions. Meanwhile, the net power generation and the power-mass ratio reached 213 kW and 0.7303 kW/kg, respectively. So, this result can meet the power-mass ratio standard given by the Pacific Northwest National Laboratory (PNNL) for the SOFC-GT hybrid system used in the aerospace field. Finally, the application of the system on commercial aircraft as both main power system and auxiliary power unit was discussed, and the designed SOFC-GT hybrid system showed good aviation application prospects.


  • loading
  • [1]
    SMITH H J. The PACE of clean energy development[J]. Science,2017,355(6328): 921-922. doi: 10.1126/science.2017.355.6328.twil
    MALE J L,KINTNER-MEYER M C W,WEBER R S. The U. S. energy system and the production of sustainable aviation fuel from clean electricity[J]. Frontiers in Energy Research,2021,9(3): 765360.1-765360.13.
    JEONG W,YU W,LEE M S,et al. Ultrathin sputtered platinum-gadolinium doped ceria cathodic interlayer for enhanced performance of low temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy,2020,45(56): 32442-32448. doi: 10.1016/j.ijhydene.2020.08.239
    刘少名,邓占锋,徐桂芝,等. 欧洲固体氧化物燃料电池(SOFC)产业化现状[J]. 工程科学学报,2020,42(3): 278-288.

    LIU Shaoming,DENG Zhanfeng,XU Guizhi,et al. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe[J]. Chinese Journal of Engineering,2020,42(3): 278-288. (in Chinese)
    LIN P H,HONG C W. Cold start dynamics and temperature sliding observer design of an automotive SOFC APU[J]. Journal of Power Sources,2009,187(2): 517-526. doi: 10.1016/j.jpowsour.2008.11.043
    CHOUDHARY T, SAHU M, KRISHNA S. Thermodynamic analysis of solid oxide fuel cell gas turbine hybrid system for aircraft power generation[R]. SAE Technical Paper-01-2062, 2017.
    胡焦英,毛军逵,贺振宗. 基于航空煤油重整的SOFC-GT混合动力系统性能[J]. 航空动力学报,2020,35(2): 325-336. doi: 10.13224/j.cnki.jasp.2020.02.012

    HU Jiaoying,MAO Junkui,HE Zhenzong. Performance of the SOFC-GT hybrid system based on aviation kerosene reforming[J]. Journal of Aerospace Power,2020,35(2): 325-336. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.02.012
    秦江,姬志行,郭发福,等. 航空用燃料电池及混合电推进系统发展综述[J]. 推进技术,2022,43(7): 6-23.

    QIN Jiang,JI Zhixing,GUO Fafu,et al. Review of aviation fuel cell and hybrid electric propulsion systems[J]. Journal of Propulsion Technology,2022,43(7): 6-23. (in Chinese)
    SANZ O,VELASCO I,PÉREZ-MIQUEO I,et al. Intensification of hydrogen production by methanol steam reforming[J]. International Journal of Hydrogen Energy,2016,41(10): 5250-5259. doi: 10.1016/j.ijhydene.2016.01.084
    DOLAN R H,ANDERSON J E,WALLINGTON T J. Outlook for ammonia as a sustainable transportation fuel[J]. Sustainable Energy & Fuels,2021,5(19): 4830-4841.
    LAN Rong,TAO Shanwen. Ammonia as a suitable fuel for fuel cells[J]. Frontiers in Energy Research,2014,2(3): 35-47.
    MIYAZAKI K,OKANISHI T,MUROYAMA H,et al. Development of Ni-Ba (Zr, Y) O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells[J]. Journal of Power Sources,2017,365: 148-154. doi: 10.1016/j.jpowsour.2017.08.085
    ISHAK F,DINCER I,ZAMFIRESCU C. Energy and exergy analyses of direct ammonia solid oxide fuel cell integrated with gas turbine power cycle[J]. Journal of Power Sources,2012,212: 73-85. doi: 10.1016/j.jpowsour.2012.03.083
    EZZAT M F,DINCER I. Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems[J]. Energy,2020,194: 116750-116764. doi: 10.1016/j.energy.2019.116750
    COLLINS J M,MCLARTY D. All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids[J]. Applied Energy,2020,265: 114787.1-114787.9.
    WOJCIK A,MIDDLETON H,DAMOPOULOS I,et al. Ammonia as a fuel in solid oxide fuel cells[J]. Journal of Power Sources,2003,118(1/2): 342-348.
    GUO Fafu,QIN Jiang,JI Zhixing,et al. Performance analysis of a turbofan engine integrated with solid oxide fuel cells based on Al-H2O hydrogen production for more electric long-endurance UAVs[J]. Energy Conversion and Management,2021,235(5): 113999.1-113999.16.
    刘强,段远源. 超临界600MW火电机组热力系统的火用分析[J]. 中国电机工程学报,2010,30(32): 8-12. doi: 10.13334/j.0258-8013.pcsee.2010.32.020

    LIU Qiang,DUAN Yuanyuan. Exergy analysis for thermal power system of a 600 MW supercritical power unit[J]. Proceedings of the CSEE,2010,30(32): 8-12. (in Chinese) doi: 10.13334/j.0258-8013.pcsee.2010.32.020
    SHAMOUSHAKI M,EHYAEI M A,GHANATIR F. Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant[J]. Energy,2017,134: 515-531. doi: 10.1016/j.energy.2017.06.058
    JI Zhixing,QIN Jiang,CHENG Kunlin,et al. Design and performance of a compact air-breathing jet hybrid-electric engine coupled with solid oxide fuel cells[J]. Frontiers in Energy Research,2021,8: 613205.1-613205.14.
    JI Zhixing,ROKNI M M,QIN Jiang,et al. Energy and configuration management strategy for battery/fuel cell/jet engine hybrid propulsion and power systems on aircraft[J]. Energy Conversion and Management,2020,225: 113393.1-113393.16.
    CIRIGLIANO D,FRISCH A M,LIU Feng,et al. Diesel, spark-ignition, and turboprop engines for long-duration unmanned air flights[J]. Journal of Propulsion and Power,2018,34(4): 878-892. doi: 10.2514/1.B36547
    TORNABENE R, WANG X Y, STEFFEN C J Jr, et al. Development of parametric mass and volume models for an aerospace SOFC/gas turbine hybrid system[C]// Turbo Expo 2005 ASMEDC. Reno-Tahoe, US : NASA, 2005: 135-144.
    LUO Yu,LIAO Shuting,CHEN Shuai,et al. Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation[J]. Applied Energy,2022,307(2): 118158.1-118158.14.
    MOLOUK A F S,YANG Jun,OKANISHI T,et al. Electrochemical and catalytic behavior of Ni-based cermet anode for ammonia-fueled SOFCs[J]. ECS Transactions,2015,68(1): 2751-2762. doi: 10.1149/06801.2751ecst
    吴小娟. 固体氧化物燃料电池/微型燃气轮机混合发电系统的建模与控制[D]. 上海: 上海交通大学, 2009.

    WU Xiaojuan. Modeling and control of solid oxide fuel cell/micro gas turbine hybrid power generation system[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese)
    JI Zhixing,QIN Jiang,CHENG Kunlin,et al. Comparative performance analysis of solid oxide fuel cell turbine-less jet engines for electric propulsion airplanes: application of alternative fuel[J]. Aerospace Science and Technology,2019(10): 105286.1-105286.14.
    SEYAM S,DINCER I,AGELIN-CHAAB M. Investigation of two hybrid aircraft propulsion and powering systems using alternative fuels[J]. Energy,2021,232(1): 121037.1-121037.12.
    LI Y H,CHOI S S,RAJAKARUNA S. An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system[J]. IEEE Transactions on Energy Conversion,2005,20(2): 381-387. doi: 10.1109/TEC.2005.847998
    钱煜平,张扬军. 航空混合电推进系统中的热管理问题分析[J]. 航空动力,2019(6): 36-40.

    QIAN Yuping,ZHANG Yangjun. Analysis of thermal management in aviation hybrid electric propulsion system[J]. Aerospace Power,2019(6): 36-40. (in Chinese)
    VALENCIA E A, HIDALGO V, PANAGIOTIS L, et al. Design point analysis of an hybrid fuel cell gas turbine cycle for advanced distributed propulsion systems[C]//Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia, US: AIAA, 2015: 3802-3802.
    FERNANDES M D,DE P ANDRADE S T,BISTRITZKI V N,et al. SOFC-APU systems for aircraft: a review[J]. International Journal of Hydrogen Energy,2018,43(33): 16311-16333. doi: 10.1016/j.ijhydene.2018.07.004
    DAGGETT D, EELMAN S, KRISTIANSSON G. Fuel cell APU[R]. AIAA 2003-2660, 2003.
    BRAUN R J,GUMMALLA M,YAMANIS J. System architectures for solid oxide fuel cell-based auxiliary power units in future commercial aircraft applications[J]. Journal of Fuel Cell Science and Technology,2009,6(3): 268-271.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (146) PDF downloads(41) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint