Volume 39 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
GAO Qihong, SUN Wenjing, WANG Yujie, et al. Multi-parameters analysis on static bearing load and aerodynamic heat of hydrodynamic gas bearing with axial throughflow cooling[J]. Journal of Aerospace Power, 2024, 39(6):20220393 doi: 10.13224/j.cnki.jasp.20220393
Citation: GAO Qihong, SUN Wenjing, WANG Yujie, et al. Multi-parameters analysis on static bearing load and aerodynamic heat of hydrodynamic gas bearing with axial throughflow cooling[J]. Journal of Aerospace Power, 2024, 39(6):20220393 doi: 10.13224/j.cnki.jasp.20220393

Multi-parameters analysis on static bearing load and aerodynamic heat of hydrodynamic gas bearing with axial throughflow cooling

doi: 10.13224/j.cnki.jasp.20220393
  • Received Date: 2022-06-01
    Available Online: 2023-11-20
  • Three-dimensional fluid-solid coupled numerical simulations were performed for the hydrodynamic gas bearing with an axial throughflow cooling under a stable operating condition, so as to illustrate the multi-parameter effects on the static bearing load and aerodynamic heat. The results showed that the circumferential flow driven by the strong shearing of rotor was dominant in the film-layer gap. The axial throughflow was forced to follow the circumferential flow at its inlet section. Then it moved axially toward the outlet mainly from the larger-thickness film-layer zone, making the three-dimensional flow take on an obvious spiral flow feature. Among the concerned parameters, the eccentricity was identified to be the most important parameter affecting the static bearing load and aerodynamic heat. The film-layer mean gap had a stronger influence than the axial throughflow mass-rate on the static bearing load, but the situation was opposite for the aerodynamic heat. When the static bearing load was kept nearly the same, it was found that the aerodynamic heat effect was weaker in the situation when the hydrodynamic gas bearing operated with a small eccentricity and also a small film-layer man gap. For the situation when the hydrodynamic gas bearing operated with a big eccentricity and also a big film-layer mean gap, the aerodynamic heat effect was stronger, bringing about a more crucial requirement of heat dissipation.

     

  • loading
  • [1]
    HESHMAT H. Advancements in the performance of aerodynamic foil journal bearings: high speed and load capability[J]. Journal of Tribology,1994,116: 287-294. doi: 10.1115/1.2927211
    [2]
    李海旺,尹帅,闫晓军. 超微型高速空气轴承的动态特性[J]. 航空动力学报,2017,32(11): 2680-2686. LI Haiwang,YIN Shuai,YAN Xiaojun. Dynamic performance of super micro high speed air bearings[J]. Journal of Aerospace Power,2017,32(11): 2680-2686. (in Chinese doi: 10.13224/j.cnki.jasp.2017.11.015

    LI Haiwang, YIN Shuai, YAN Xiaojun. Dynamic performance of super micro high speed air bearings[J]. Journal of Aerospace Power, 2017, 32(11): 2680-2686. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.11.015
    [3]
    谢伟松,林鑫,王伟韬,等. 航空发动机弹性箔片气体动压轴承技术研究及性能评价综述[J]. 润滑与密封,2018,43(7): 136-147. XIE Weisong,LIN Xin,WANG Weitao,et al. Review of technique application and performance evaluation for aerodynamic elastic foil gas bearing in aero-engine[J]. Lubrication Engineering,2018,43(7): 136-147. (in Chinese doi: 10.3969/j.issn.0254-0150.2018.07.025

    XIE Weisong, LIN Xin, WANG Weitao, et al. Review of technique application and performance evaluation for aerodynamic elastic foil gas bearing in aero-engine[J]. Lubrication Engineering, 2018, 43(7): 136-147. (in Chinese) doi: 10.3969/j.issn.0254-0150.2018.07.025
    [4]
    SAMANTA P,MURMU N C,KHONSARI M M. The evolution of foil bearing technology[J]. Tribology International,2019,135: 305-323. doi: 10.1016/j.triboint.2019.03.021
    [5]
    RYU K,SAN ANDRÉS L. On the failure of a gas foil bearing: high temperature operation without cooling flow[J]. Journal of Engineering for Gas Turbines and Power,2013,135(11): 112506. doi: 10.1115/1.4025079
    [6]
    SIM K,LEE Y B,SONG J W,et al. Identification of the dynamic performance of a gas foil journal bearing operating at high temperatures[J]. Journal of Mechanical Science and Technology,2014,28(1): 43-51. doi: 10.1007/s12206-013-0945-6
    [7]
    SAMANTA P,KHONSARI M M. On the thermoelastic instability of foil bearings[J]. Tribology International,2018,121: 10-20. doi: 10.1016/j.triboint.2018.01.014
    [8]
    SALEHI M,SWANSON E,HESHMAT H. Thermal features of compliant foil bearings: theory and experiments[J]. Journal of Tribology,2001,123(3): 566-571. doi: 10.1115/1.1308038
    [9]
    RADIL K,DELLACORTE C,ZESZOTEK M. Thermal management techniques for oil-free turbomachinery systems[J]. Tribology Transactions,2007,50(3): 319-327. doi: 10.1080/10402000701413497
    [10]
    KIM T H,SAN ANDRÉS L. Thermohydrodynamic model predictions and performance measurements of bump-type foil bearing for oil-free turboshaft engines in rotorcraft propulsion systems[J]. Journal of Tribology,2010,132(1): 011701. doi: 10.1115/1.4000279
    [11]
    RADIL K,BATCHO Z. Air injection as a thermal management technique for radial foil air bearings[J]. Tribology Transactions,2011,54(4): 666-673. doi: 10.1080/10402004.2011.589964
    [12]
    SHRESTHA S K,KIM D,CHEOL KIM Y. Experimental feasibility study of radial injection cooling of three-pad air foil bearings[J]. Journal of Tribology,2013,135(4): 041703. doi: 10.1115/1.4024547
    [13]
    RYU K,ANDRÉS L S. Effect of cooling flow on the operation of a HotRotor-gas foil bearing system[J]. Journal of Engineering for Gas Turbines and Power,2012,134(10): 102511. doi: 10.1115/1.4007067
    [14]
    LEE D,LIM H,CHOI B,et al. Thermal behavior of radial foil bearings supporting an oil-free gas turbine: design of the cooling flow passage and modeling of the thermal system[J]. Journal of Engineering for Gas Turbines and Power,2017,139(6): 061902. doi: 10.1115/1.4035324
    [15]
    ZHANG Kai,ZHAO Xueyuan,FENG Kai,et al. Thermohydrodynamic analysis and thermal management of hybrid bump-metal mesh foil bearings: experimental tests and theoretical predictions[J]. International Journal of Thermal Sciences,2018,127: 91-104. doi: 10.1016/j.ijthermalsci.2018.01.018
    [16]
    徐方程,张广辉,孙毅,等. 平箔片楔形高度对气体止推箔片轴承特性影响[J]. 航空动力学报,2016,31(12): 3064-3072. XU Fangcheng,ZHANG Guanghui,SUN Yi,et al. Performance analysis of air foil thrust bearings with different top foil taper heights[J]. Journal of Aerospace Power,2016,31(12): 3064-3072. (in Chinese doi: 10.13224/j.cnki.jasp.2016.12.031

    XU Fangcheng, ZHANG Guanghui, SUN Yi, et al. Performance analysis of air foil thrust bearings with different top foil taper heights[J]. Journal of Aerospace Power, 2016, 31(12): 3064-3072. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.12.031
    [17]
    王锐,侯安平,李忠,等. 厚顶箔的箔片动压轴承性能的数值研究[J]. 航空动力学报,2020,35(10): 2123-2135. WANG Rui,HOU Anping,LI Zhong,et al. Numerical investigation of gas journal foil bearing performance with thick top foil[J]. Journal of Aerospace Power,2020,35(10): 2123-2135. (in Chinese doi: 10.13224/j.cnki.jasp.2020.10.012

    WANG Rui, HOU Anping, LI Zhong, et al. Numerical investigation of gas journal foil bearing performance with thick top foil[J]. Journal of Aerospace Power, 2020, 35(10): 2123-2135. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.10.012
    [18]
    ZHOU Yu,SHAO Longtao,ZHANG Can,et al. Numerical and experimental investigation on dynamic performance of bump foil journal bearing based on journal orbit[J]. Chinese Journal of Aeronautics,2021,34(2): 586-600. doi: 10.1016/j.cja.2019.12.001
    [19]
    PENG Z C,KHONSARI M M. A thermohydrodynamic analysis of foil journal bearings[J]. Journal of Tribology,2006,128(3): 534-541. doi: 10.1115/1.2197526
    [20]
    SIM K,KIM D. Thermohydrodynamic analysis of compliant flexure pivot tilting pad gas bearings[J]. Journal of Engineering for Gas Turbines and Power,2008,130(3): 032502. doi: 10.1115/1.2836616
    [21]
    冯凯,邓志洪,赵雪源,等. 箔片气体轴承静态特性和温度特性实验[J]. 航空动力学报,2017,32(6): 1394-1399. FENG Kai,DENG Zhihong,ZHAO Xueyuan,et al. Test on static and temperature characteristics of gas foil bearing[J]. Journal of Aerospace Power,2017,32(6): 1394-1399. (in Chinese doi: 10.13224/j.cnki.jasp.2017.06.016

    FENG Kai, DENG Zhihong, ZHAO Xueyuan, et al. Test on static and temperature characteristics of gas foil bearing[J]. Journal of Aerospace Power, 2017, 32(6): 1394-1399. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.06.016
    [22]
    AKSOY S,AKSIT M F. A fully coupled 3D thermo-elastohydrodynamics model for a bump-type compliant foil journal bearing[J]. Tribology International,2015,82: 110-122. doi: 10.1016/j.triboint.2014.10.001
    [23]
    LEE D,KIM D. Thermohydrodynamic analyses of bump air foil bearings with detailed thermal model of foil structures and rotor[J]. Journal of Tribology,2010,132(2): 021704. doi: 10.1115/1.4001014
    [24]
    LEE D,KIM D,SADASHIVA R P. Transient thermal behavior of preloaded three-pad foil bearings: modeling and experiments[J]. Journal of Tribology,2011,133(2): 021703. doi: 10.1115/1.4003561
    [25]
    LE LEZ S,ARGHIR M,FRENE J. Static and dynamic characterization of a bump-type foil bearing structure[J]. Journal of Tribology,2007,129(1): 75-83. doi: 10.1115/1.2390717
    [26]
    ŻYWICA G,BAGIŃSKI P. Investigation of gas foil bearings with an adaptive and non-linear structure[J]. Acta Mechanica et Automatica,2019,13(1): 5-10. doi: 10.2478/ama-2019-0001
    [27]
    GARCIA M,BOU-SAÏD B,ROCCHI J,et al. Refrigerant foil bearing behavior: a thermo-hydrodynamic study[J]. Tribology International,2013,65: 363-369. doi: 10.1016/j.triboint.2012.12.006
    [28]
    SWEET J N,ROTH E P,MOSS M. Thermal conductivity of Inconel 718 and 304 stainless steel[J]. International Journal of Thermophysics,1987,8(5): 593-606. doi: 10.1007/BF00503645
    [29]
    张镜洋,赵晓荣,常海萍,等. 边界滑移对波箔型动压气体轴承静特性的影响[J]. 推进技术,2018,39(2): 388-395. ZHANG Jingyang,ZHAO Xiaorong,CHANG Haiping,et al. Effects of sliding boundary on static characteristics of aerodynamic compliant foil bearing[J]. Journal of Propulsion Technology,2018,39(2): 388-395. (in Chinese doi: 10.13675/j.cnki.tjjs.2018.02.018

    ZHANG Jingyang, ZHAO Xiaorong, CHANG Haiping, et al. Effects of sliding boundary on static characteristics of aerodynamic compliant foil bearing[J]. Journal of Propulsion Technology, 2018, 39(2): 388-395. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.02.018
    [30]
    周健斌,孟光,张文明. 微机电系统径向气体轴承特性研究[J]. 振动与冲击,2007,26(9): 30-33,168. ZHOU Jianbin,MENG Guang,ZHANG Wenming. Characteristics of micro gas journal bearing[J]. Journal of Vibration and Shock,2007,26(9): 30-33,168. (in Chinese doi: 10.3969/j.issn.1000-3835.2007.09.008

    ZHOU Jianbin, MENG Guang, ZHANG Wenming. Characteristics of micro gas journal bearing[J]. Journal of Vibration and Shock, 2007, 26(9): 30-33, 168. (in Chinese) doi: 10.3969/j.issn.1000-3835.2007.09.008
    [31]
    QIN Kan,LI Daijin,HUANG Chuang,et al. Numerical investigation on heat transfer characteristics of Taylor Couette flows operating with CO2[J]. Applied Thermal Engineering,2020,165: 114570. doi: 10.1016/j.applthermaleng.2019.114570
    [32]
    CHIPPERFIELD A J. The MATLAB genetic algorithm toolbox[C]//Proceedings of IEE Colloquium on Applied Control Techniques Using MATLAB. London,UK: IEE,1995: 1-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (54) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return