Volume 39 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
XIAO Changgeng, LIU Youhong, ZHANG Han, et al. Effect of converging diverging mixing duct geometric parameters on performance of circularly lobed nozzle ejector[J]. Journal of Aerospace Power, 2024, 39(6):20220404 doi: 10.13224/j.cnki.jasp.20220404
Citation: XIAO Changgeng, LIU Youhong, ZHANG Han, et al. Effect of converging diverging mixing duct geometric parameters on performance of circularly lobed nozzle ejector[J]. Journal of Aerospace Power, 2024, 39(6):20220404 doi: 10.13224/j.cnki.jasp.20220404

Effect of converging diverging mixing duct geometric parameters on performance of circularly lobed nozzle ejector

doi: 10.13224/j.cnki.jasp.20220404
  • Received Date: 2022-06-05
    Available Online: 2023-11-27
  • At present, few studies are devoted to the effect of structural parameters of converging diverging mixing ducts on circularly lobed nozzle ejector. Therefore, several converging diverging mixing ducts with different geometric parameters were designed firstly, and an experimental study on the pumping performance of circularly lobed nozzle and circular nozzle exhaust-ejector scaled-down models was developed. The results showed that when the throat diameter and length of the mixing duct were smaller, the pumping ratio of the circular nozzle was higher than that of the lobed nozzle within lower main flow range, but the situation was reversed as the mass flow increased. When the throat diameter and length of the mixing duct were larger, under the condition of wall-attached main flow, the pumping ratio of the lobed nozzle was higher than that of the circular nozzle within the experimental mass flow range. With the increase of the mass flow, a maximum value of the pumping ratios appeared. Furthermore, as the throat diameter and length increased, the maximum value also gradually increased, and the maximum growth rate was 58.5%. Secondly, a numerical calculation model was established and verified by experimental data, with the error not more than 4.5%. The simulation results showed that the total pressure recovery coefficient increased as the throat diameter and length of the mixing duct increased. Therefore, larger mixing ducts throat diameter and length had an improved effect on flow loss.

     

  • loading
  • [1]
    PRESZ J W. Mixer/ejector noise suppressors[R]. AIAA-91-2243,1991.
    [2]
    张靖周,李立国,高潮,等. 波瓣喷管红外抑制系统的实验研究[J]. 航空动力学报,1997,12(2): 212-214. ZHANG Jingzhou,LI Liguo,GAO Chao,et al. An experimental study on a lobed nozzle of an infrared suppression system[J]. Journal of Aerospace Power,1997,12(2): 212-214. (in Chinese doi: 10.13224/j.cnki.jasp.1997.02.028

    ZHANG Jingzhou, LI Liguo, GAO Chao, et al. An experimental study on a lobed nozzle of an infrared suppression system[J]. Journal of Aerospace Power, 1997, 12(2): 212-214. (in Chinese) doi: 10.13224/j.cnki.jasp.1997.02.028
    [3]
    PRESZ W,REYNOLDS G,MCCORMICK D. Thrust augmentation using mixer-ejector-diffuser systems[R]. AIAA-94-0020,1994.
    [4]
    TAN Xiaoming,ZHANG Jingzhou,YONG Shan,et al. An experimental investigation on comparison of synthetic and continuous jets impingement heat transfer[J]. International Journal of Heat and Mass Transfer,2015,90: 227-238. doi: 10.1016/j.ijheatmasstransfer.2015.06.065
    [5]
    MANGATE L D,CHAUDHARI M B. Heat transfer and acoustic study of impinging synthetic jet using diamond and oval shape orifice[J]. International Journal of Thermal Sciences,2015,89: 100-109. doi: 10.1016/j.ijthermalsci.2014.10.006
    [6]
    吕元伟,张靖周,王博滟,等. 冠齿喷嘴射流冲击平直靶面对流换热实验[J]. 航空学报,2018,39(3): 121694. LYU Yuanwei,ZHANG Jingzhou,WANG Boyan,et al. Experimental of chevron nozzle jet impingement heat transfer on flat targeting surface[J]. Acta Aeronautica et Astronautica Sinica,2018,39(3): 121694. (in Chinese

    LYU Yuanwei, ZHANG Jingzhou, WANG Boyan, et al. Experimental of chevron nozzle jet impingement heat transfer on flat targeting surface[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121694. (in Chinese)
    [7]
    VIOLATO D,IANIRO A,CARDONE G,et al. Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets[J]. International Journal of Heat and Fluid Flow,2012,37: 22-36. doi: 10.1016/j.ijheatfluidflow.2012.06.003
    [8]
    HERRERO MARTIN R,BUCHLIN J M. Jet impingement heat transfer from lobed nozzles[J]. International Journal of Thermal Sciences,2011,50(7): 1199-1206. doi: 10.1016/j.ijthermalsci.2011.02.017
    [9]
    HE Chuangxin,LIU Yingzheng. Jet impingement heat transfer of a lobed nozzle: measurements using temperature-sensitive paint and particle image velocimetry[J]. International Journal of Heat and Fluid Flow,2018,71: 111-126. doi: 10.1016/j.ijheatfluidflow.2018.03.017
    [10]
    YANG H Q,KIM T,LU T J,et al. Flow structure,wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling[J]. International Journal of Heat and Mass Transfer,2010,53(19/20): 4092-4100.
    [11]
    施小娟,吉洪湖. 二元收扩喷管设计参数对红外特征影响的数值研究[J]. 航空动力学报,2020,35(5): 944-955. SHI Xiaojuan,JI Honghu. Numerical investigation of influence of two-dimensional convergent and divergent nozzle’s design parameters on infrared characteristics[J]. Journal of Aerospace Power,2020,35(5): 944-955. (in Chinese

    SHI Xiaojuan, JI Honghu. Numerical investigation of influence of two-dimensional convergent and divergent nozzle’s design parameters on infrared characteristics[J]. Journal of Aerospace Power, 2020, 35(5): 944-955. (in Chinese)
    [12]
    PAN Chengxiong,ZHANG Jingzhou,SHAN Yong. Effects of exhaust temperature on helicopter infrared signature[J]. Applied Thermal Engineering,2013,51(1/2): 529-538.
    [13]
    PAN Chengxiong,SHAN Yong,ZHANG Jingzhou. Parametric effects on internal aerodynamics of lobed mixer-ejector with curved mixing duct[J]. Journal of Engineering for Gas Turbines and Power,2014,136(6): 061504. doi: 10.1115/1.4026426
    [14]
    PRESZ W. Short efficient ejector systems[R]. AIAA1987-1837,1987.
    [15]
    SKEBE S,MCCORMICK D,PRESZ W. Parameter effects on mixer-ejector pumping performance[R]. AIAA1988-188,1988.
    [16]
    HU Hui,WU Shousheng,SHEN Gongxin. Experimental investigation on the jet mixing flows of lobed nozzles using laser induced fluorescence[R]. AIAA1996-1937,1996.
    [17]
    HU Hui,SAGA T,KOBAYASHI T,et al. A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique[J]. Physics of Fluids,2001,13(11): 3425-3441. doi: 10.1063/1.1409537
    [18]
    刘友宏. 波瓣引射混合器冷热态实验研究与数值模拟[D]. 南京: 南京航空航天大学,2000. LIU Youhong. Experimental and numerical investigation of lobed exhaust-ejector mixers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2000. (in Chinese

    LIU Youhong. Experimental and numerical investigation of lobed exhaust-ejector mixers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2000. (in Chinese)
    [19]
    刘友宏,刘伟. 圆排波瓣弯曲混合管引射实验与数值模拟[J]. 航空动力学报,2005,20(1): 92-97. LIU Youhong,LIU Wei. Experimental and numerical study of ejection characteristics of circular lobe ejector with bend mixers[J]. Journal of Aerospace Power,2005,20(1): 92-97. (in Chinese doi: 10.3969/j.issn.1000-8055.2005.01.017

    LIU Youhong, LIU Wei. Experimental and numerical study of ejection characteristics of circular lobe ejector with bend mixers[J]. Journal of Aerospace Power, 2005, 20(1): 92-97. (in Chinese) doi: 10.3969/j.issn.1000-8055.2005.01.017
    [20]
    刘友宏,陈锵,李立国. 圆排波瓣圆柱混合管的气动特性实验研究[J]. 南京航空航天大学学报,2000,32(4): 375-380. LIU Youhong,CHEN Qiang,LI Liguo. Experimental investigation of internal aerodynamics of periodically axis-symmetry lobed exhaust-ejector mixers[J]. Journal of Nanjing University of Aeronautics & Astronautics,2000,32(4): 375-380. (in Chinese doi: 10.3969/j.issn.1005-2615.2000.04.002

    LIU Youhong, CHEN Qiang, LI Liguo. Experimental investigation of internal aerodynamics of periodically axis-symmetry lobed exhaust-ejector mixers[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2000, 32(4): 375-380. (in Chinese) doi: 10.3969/j.issn.1005-2615.2000.04.002
    [21]
    LIU Youhong. Experimental and numerical research on high pumping performance mechanism of lobed exhauster-ejector mixer[J]. International Communications in Heat and Mass Transfer,2007,34(2): 197-209. doi: 10.1016/j.icheatmasstransfer.2006.10.003
    [22]
    李腾,刘友宏,谢翌,等. 波瓣高宽比对波瓣强迫混合排气系统性能影响[J]. 航空动力学报,2013,28(8): 1736-1743. LI Teng,LIU Youhong,XIE Yi,et al. Effect of ratio of height to width of lobe on performance of forced mixing exhaust system[J]. Journal of Aerospace Power,2013,28(8): 1736-1743. (in Chinese doi: 10.13224/j.cnki.jasp.2013.08.012

    LI Teng, LIU Youhong, XIE Yi, et al. Effect of ratio of height to width of lobe on performance of forced mixing exhaust system[J]. Journal of Aerospace Power, 2013, 28(8): 1736-1743. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.08.012
    [23]
    单勇,张靖周. 波瓣喷管引射-混合器涡结构的数值研究[J]. 空气动力学学报,2005,23(3): 355-359. SHAN Yong,ZHANG Jingzhou. Numerical investigation of vortical structures in the lobed mixer-ejector[J]. Acta Aerodynamica Sinica,2005,23(3): 355-359. (in Chinese doi: 10.3969/j.issn.0258-1825.2005.03.017

    SHAN Yong, ZHANG Jingzhou. Numerical investigation of vortical structures in the lobed mixer-ejector[J]. Acta Aerodynamica Sinica, 2005, 23(3): 355-359. (in Chinese) doi: 10.3969/j.issn.0258-1825.2005.03.017
    [24]
    潘丞雄,张靖周,单勇. 斜切对抑制引射式波瓣喷管内部流动分离的效果研究[J]. 航空学报,2013,34(2): 255-262. PAN Chengxiong,ZHANG Jingzhou,SHAN Yong. Research on surpressing flow separation of lobed mixer-ejector by scarfing treatment[J]. Acta Aeronautica et Astronautica Sinica,2013,34(2): 255-262. (in Chinese

    PAN Chengxiong, ZHANG Jingzhou, SHAN Yong. Research on surpressing flow separation of lobed mixer-ejector by scarfing treatment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 255-262. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (36) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return