Volume 39 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
SONG Liyao, WANG Dan, CAO Peng, et al. Study on installation location of dry friction damper for helicopter supercritical tail drive shaft[J]. Journal of Aerospace Power, 2024, 39(6):20220409 doi: 10.13224/j.cnki.jasp.20220409
Citation: SONG Liyao, WANG Dan, CAO Peng, et al. Study on installation location of dry friction damper for helicopter supercritical tail drive shaft[J]. Journal of Aerospace Power, 2024, 39(6):20220409 doi: 10.13224/j.cnki.jasp.20220409

Study on installation location of dry friction damper for helicopter supercritical tail drive shaft

doi: 10.13224/j.cnki.jasp.20220409
  • Received Date: 2022-06-06
    Available Online: 2023-11-27
  • The influence of location of the dry friction damper on dynamics of the shaft/dry friction damper system was studied to ensure that the vibration of the shaft can be suppressed effectively as crossing the first and second critical speeds. Firstly, the nonlinear finite element dynamic model of the shaft/damper system was established based on the theories of Timoshenko beam and nonlinear rub-impact. The responses of the system were obtained by numerical calculation. The typical response of the shaft as crossing critical speeds and the influence of damper location were further analyzed. The results showed that there existed four stages when the shaft passed through critical speeds, including periodic no-rub motion, quasi periodic rub-impact motion, synchronous full annular rub-impact motion, and finally back to periodic no-rub motion. With the damper located at the middle node, the vibration of the shaft can be effectively suppressed when crossing the first critical speed. With the damper located at the one-quarter node and three-eighth node, the vibration of the shaft when crossing the first and second critical speeds can be both effectively suppressed. However, the shaft may not work normally when the damper was located at the three-eighth node.

     

  • loading
  • [1]
    吴希明,牟晓伟. 直升机关键技术及未来发展与设想[J]. 空气动力学学报,2021,39(3): 1-10. WU Ximing,MU Xiaowei. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica,2021,39(3): 1-10. (in Chinese

    WU Ximing, MU Xiaowei. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica, 2021, 39(3): 1-10. (in Chinese)
    [2]
    王锡龙. 粘弹性减振器对直升机传动轴系动力学特性的影响研究[D]. 南京: 南京航空航天大学,2012. WANG Xilong. Research on the effects of viscoelastic damper to the dynamics of helicopter drive shaft system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2012. (in Chinese

    WANG Xilong. Research on the effects of viscoelastic damper to the dynamics of helicopter drive shaft system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [3]
    谭武中,王祁波. 直升机传动系统装机振动特性综述[J]. 科学技术创新,2019(2): 1-3. TAN Wuzhong,WANG Qibo. Summary of installed vibration characteristics of helicopter transmission system[J]. Scientific and Technological Innovation,2019(2): 1-3. (in Chinese

    TAN Wuzhong, WANG Qibo. Summary of installed vibration characteristics of helicopter transmission system[J]. Scientific and Technological Innovation, 2019(2): 1-3. (in Chinese)
    [4]
    谭蔚,陈晓宇,孟国龙,等. 粘弹性阻尼器在联合塔器中的减振研究[J]. 化工机械,2019,46(2): 131-136,151. TAN Wei,CHEN Xiaoyu,MENG Guolong,et al. Study on vibration reduction of viscoelastic dampers in combined tower[J]. Chemical Engineering & Machinery,2019,46(2): 131-136,151. (in Chinese

    TAN Wei, CHEN Xiaoyu, MENG Guolong, et al. Study on vibration reduction of viscoelastic dampers in combined tower[J]. Chemical Engineering & Machinery, 2019, 46(2): 131-136, 151. (in Chinese)
    [5]
    张针粒. 粘弹性隔振器动力学性能理论及实验研究[D]. 武汉: 华中科技大学,2012. ZHANG Zhenli. Theoretical and experimental study on dynamic properties of viscoelastic isolators[D]. Wuhan: Huazhong University of Science and Technology,2012. (in Chinese

    ZHANG Zhenli. Theoretical and experimental study on dynamic properties of viscoelastic isolators[D]. Wuhan: Huazhong University of Science and Technology, 2012. (in Chinese)
    [6]
    TAHIRI M,KHAMLICHI A,BEZZAZI M. Application of viscoelastic dampers for reducing dynamic response of high-speed railway bridges[J]. International Review of Applied Sciences and Engineering,2020,11(2): 95-106. doi: 10.1556/1848.2020.20004
    [7]
    刘阳,陶继忠,郑越青,等. 粘弹性支承柔性转子的动力学分析[J]. 机械设计与制造,2014(6): 191-194. LIU Yang,TAO Jizhong,ZHENG Yueqing,et al. Dynamic analysis of a flexible rotor with viscoelastic support[J]. Machinery Design & Manufacture,2014(6): 191-194. (in Chinese

    LIU Yang, TAO Jizhong, ZHENG Yueqing, et al. Dynamic analysis of a flexible rotor with viscoelastic support[J]. Machinery Design & Manufacture, 2014(6): 191-194. (in Chinese)
    [8]
    GHAEMMAGHAMI A R,KWON O S. Nonlinear modeling of MDOF structures equipped with viscoelastic dampers with strain,temperature and frequency-dependent properties[J]. Engineering Structures,2018,168: 903-914. doi: 10.1016/j.engstruct.2018.04.037
    [9]
    MAXIMOV Y,LEGOVICH Y,MAXIMOV D. Frequency characteristics of viscoelastic damper models and evaluation of a damper influence on induced oscillations of mechanical system elements[J]. Meccanica,2021,56(12): 3107-3124. doi: 10.1007/s11012-021-01446-9
    [10]
    LEWANDOWSKI R,PRZYCHODZKI M. Approximate method for temperature-dependent characteristics of structures with viscoelastic dampers[J]. Archive of Applied Mechanics,2018,88(10): 1695-1711. doi: 10.1007/s00419-018-1394-6
    [11]
    LI Qiangqiang,XU Zhaodong,DONG Yaorong,et al. Effects of mechanical nonlinearity of viscoelastic dampers on the seismic performance of viscoelasticlly damped structures[J]. Soil Dynamics and Earthquake Engineering,2021,150: 106936. doi: 10.1016/j.soildyn.2021.106936
    [12]
    ÖZAYDIN O. Vibration reduction of helicopter tail shaft by using dry friction dampers[D]. Ankara,Turkey: Middle East Technical University,2017.
    [13]
    DŻYGADȽO Z,PERKOWSKI W. Nonlinear dynamic model for flexural vibrations analysis of a supercritical helicopter’s tail rotor drive shaft[R]. Harrogate,UK: 22nd International Congress of Aeronautical Sciences,2000.
    [14]
    DŻYGADŁO Z,PERKOWSKI W. Research on dynamics of a supercritical propulsion shaft equipped with a dry friction damper[J]. Aircraft Engineering and Aerospace Technology,2002,74(5): 447-454. doi: 10.1108/00022660210442290
    [15]
    PERKOWSKI W. Dry friction damper for supercritical drive shaft[J]. Journal of KONES Powertrain and Transport,2016,23(4): 389-396. doi: 10.5604/12314005.1217255
    [16]
    HUANG Zhonghe,TAN Jianping,LIU Chuliang,et al. Dynamic characteristics of a segmented supercritical driveline with flexible couplings and dry friction dampers[J]. Symmetry,2021,13(2): 281. doi: 10.3390/sym13020281
    [17]
    HUANG Zhonghe,TAN Jianping,LU Xiong. Phase difference and stability of a shaft mounted a dry friction damper: effects of viscous internal damping and gyroscopic moment[J]. Advances in Mechanical Engineering,2021,13(3): 168781402199691.
    [18]
    王飞. 挤压油膜转子系统建模方法研究及动力特性分析[D]. 南京: 南京航空航天大学,2018. WANG Fei. Research on modeling method and dynamic characteristic analysis for squeeze film damper rotor system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2018. (in Chinese

    WANG Fei. Research on modeling method and dynamic characteristic analysis for squeeze film damper rotor system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [19]
    江俊,陈艳华. 转子与定子碰摩的非线性动力学研究[J]. 力学进展,2013,43(1): 132-148. JIANG Jun,CHEN Yanhua. Advances in the research on nonlinear phenomona in rotor/stator rubbing systems[J]. Advances in Mechanics,2013,43(1): 132-148. (in Chinese

    JIANG Jun, CHEN Yanhua. Advances in the research on nonlinear phenomona in rotor/stator rubbing systems[J]. Advances in Mechanics, 2013, 43(1): 132-148. (in Chinese)
    [20]
    PENNESTRì E,ROSSI V,SALVINI P,et al. Review and comparison of dry friction force models[J]. Nonlinear Dynamics,2016,83(4): 1785-1801. doi: 10.1007/s11071-015-2485-3
    [21]
    王旦,宋立瑶,陈柏,等. 直升机超临界尾传动轴限幅减振器非线性动力学特性研究[J]. 振动工程学报,2023,36(03): 593-605. WANG Dan,SONG Liyao,CHEN Bai,et al. Nonlinear dynamics of a supercritical tail rotor drive shaft equipped with a hybrid damper[J]. Journal of Vibration Engineering,2023,36(03): 593-605. (in Chinese

    WANG Dan, SONG Liyao, CHEN Bai, et al. Nonlinear dynamics of a supercritical tail rotor drive shaft equipped with a hybrid damper[J]. Journal of Vibration Engineering, 2023, 36(03): 593-605. (in Chinese)
    [22]
    宋兴武. 直升机尾传动轴系设计[D]. 哈尔滨: 哈尔滨工程大学,2007. SONG Xingwu. Designing of tail transmission shafting for the copter[D]. Harbin: Harbin Engineering University,2007. (in Chinese

    SONG Xingwu. Designing of tail transmission shafting for the copter[D]. Harbin: Harbin Engineering University, 2007. (in Chinese)
    [23]
    HAN Qingkai,ZHANG Zhiwei,LIU Changli,et al. Periodic motion stability of a dual-disk rotor system with rub-impact at fixed limiter[M]//Ibrahim R A,Babitsky V I,Okuma M. Vibro-impact dynamics of ocean systems and related problems. Berlin,Germany: Springer,2009: 105-119.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (33) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return