Volume 39 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
BU Weijun, XIE Lyurong, LIN Huachuan, et al. Shock-wave/boundary-layer interactions on wedge with sawtooth leading edge[J]. Journal of Aerospace Power, 2024, 39(7):20220474 doi: 10.13224/j.cnki.jasp.20220474
Citation: BU Weijun, XIE Lyurong, LIN Huachuan, et al. Shock-wave/boundary-layer interactions on wedge with sawtooth leading edge[J]. Journal of Aerospace Power, 2024, 39(7):20220474 doi: 10.13224/j.cnki.jasp.20220474

Shock-wave/boundary-layer interactions on wedge with sawtooth leading edge

doi: 10.13224/j.cnki.jasp.20220474
  • Received Date: 2022-07-01
    Available Online: 2023-09-25
  • In order to investigate the influence of three-dimensional sawtooth configuration on the flow field structure of incident shock-wave/boundary-layer interaction, the flow field of wedge with sawtooth leading edge/plate was numerically simulated and analyzed, and the influence laws of different sawtooth depths on the flow field were summarized. The results showed that, compared with the wedge with straight leading edge, the sawtooth wedge was affected by overflow. Meanwhile, the incident shock wave presented a curved three-wave structure, the shock wave intensity was weakened, the wave angle was reduced, and the flow field structure moved backward; the separation zone on plate presented a “concave” spatial structure. The spreading direction of the separation zone was low in the middle but high on both sides, and the flow direction was short in the middle but long on both sides. With the increase of sawtooth depth, the flow field structure moved backward, and the three-dimensional characteristics of the separation zone became more obvious. In the overflow model, due to the side overflow, the separation at the symmetrical plane was the largest, and the separation zone presented a three-dimensional “semi concave” spatial structure. Compared with the original overflow model, the sawtooth overflow reduced the intensity of the incident wave system and the side overflow.

     

  • loading
  • [1]
    BABINSKY H, HARVEY J K. Introduction[M]//BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions. Cambridge: Cambridge University Press, 2011: 1-4.
    [2]
    黄舶. 高超声速内外流动激波/边界层相互作用的实验与数值研究[D]. 合肥: 中国科学技术大学, 2013.

    HUANG Bo. Experimental and numerical investigation of shock wave/boundary layer interaction in hypersonic flow[D]. Hefei: University of Science and Technology of China, 2013. (in Chinese)
    [3]
    ANDERSON G Y, MCCLINTON C R, WERDNER J P. Scramjet performance[M]. Reston, US: AIAA, 2000: 369-446.
    [4]
    DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research-What next?[J]. AIAA Journal,2001,39(8): 1517-1531. doi: 10.2514/2.1476
    [5]
    GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences,2015,72(1): 80-99.
    [6]
    SCHÜLEIN E. Skin friction and heat flux measurements in shock/boundary layer interaction flows[J]. AIAA Journal,2006,44(8): 1732-1741. doi: 10.2514/1.15110
    [7]
    KORKEGI R H. A simple correlation for incipient-turbulent boundary-layer separation due to a skewed shock wave[J]. AIAA Journal,1973,11(11): 1578-1579. doi: 10.2514/3.50637
    [8]
    MURRAY N,HILLIER R,WILLIAMS S. Experimental investigation of axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions[J]. Journal of Fluid Mechanics,2013,714: 152-189. doi: 10.1017/jfm.2012.464
    [9]
    CLEMENS N T,NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics,2014,46: 469-492. doi: 10.1146/annurev-fluid-010313-141346
    [10]
    袁化成, 华正旭, 余安远. 高超声速进气道起动的物理过程及影响因素研究[C]//全国激波与激波管学术会议论文集. 洛阳: 中国力学学会激波与激波管委员会, 2016: 523-530.
    [11]
    BISEK N J. High-fidelity simulations of the HIFiRE-6 flow path at angle of attack[R]. AIAA 2016-4276, 2016.
    [12]
    STEELANT J, VARVILL R, DEFOORT S, et al. Achievements obtained for sustained hypersonic flight within the LAPCAT project[R]. AIAA 2015-3677, 2015.
    [13]
    王翼. 高超声速进气道启动问题研究[D]. 长沙: 国防科学技术大学, 2008.

    WANG Yi. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha: National University of Defense Technology, 2008. (in Chinese)
    [14]
    石磊,何国强,秦飞,等. 唇口形状对二元进气道性能影响数值模拟[J]. 推进技术,2012,33(5): 683-688. doi: 10.13675/j.cnki.tjjs.2012.05.002

    SHI Lei,HE Guoqiang,QIN Fei,et al. Numerical investigation of effects of cowl lip shape on 2-D inlet[J]. Journal of Propulsion Technology,2012,33(5): 683-688. (in Chinese) doi: 10.13675/j.cnki.tjjs.2012.05.002
    [15]
    郭金默,谢旅荣,李晓驰,等. 一种锯齿状唇口超声速轴对称进气道特性[J]. 航空动力学报,2021,36(2): 264-274. doi: 10.13224/j.cnki.jasp.2021.02.005

    GUO Jinmo,XIE Lyurong,LI Xiaochi,et al. Characteristics of a supersonic axisymmetric inlet with saw tooth lip[J]. Journal of Aerospace Power,2021,36(2): 264-274. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.02.005
    [16]
    金志光,张堃元. 高超侧压式进气道简单唇口调节方案设计[J]. 推进技术,2008,29(1): 43-48. doi: 10.3321/j.issn:1001-4055.2008.01.010

    JIN Zhiguang,ZHANG Kunyuan. Concept of a varied geometry scramjet inlet with rotatable cowl[J]. Journal of Propulsion Technology,2008,29(1): 43-48. (in Chinese) doi: 10.3321/j.issn:1001-4055.2008.01.010
    [17]
    XIAO Fengshou,LI Zhufei,ZHANG Zhiyu,et al. Hypersonic shock wave interactions on a V-shaped blunt leading edge[J]. AIAA Journal,2018,56(1): 356-367. doi: 10.2514/1.J055915
    [18]
    蒙泽威,范晓樯,陶渊,等. 三维内收缩式进气道V形溢流口热流计算与分析[J]. 推进技术,2018,39(8): 1737-1743. doi: 10.13675/j.cnki.tjjs.2018.08.007

    MENG Zewei,FAN Xiaoqiang,TAO Yuan,et al. Investigation of aerothermal heating on V-shaped leading edge of inward turning inlet[J]. Journal of Propulsion Technology,2018,39(8): 1737-1743. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.08.007
    [19]
    张恩来,李祝飞,李一鸣,等. 斜激波入射V形钝前缘溢流口激波干扰研究[J]. 实验流体力学,2018,32(3): 50-57. doi: 10.11729/syltlx20180002

    ZHANG Enlai,LI Zhufei,LI Yiming,et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J]. Journal of Experiments in Fluid Mechanics,2018,32(3): 50-57. (in Chinese) doi: 10.11729/syltlx20180002
    [20]
    LI Yiming, LI Zhufei, YANG Jiming, et al. Visualization of hypersonic inward-turning inlet flows by planar laser scattering method[R]. AIAA 2017-2358, 2017.
    [21]
    BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge, UK: Cambridge University Press, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (26) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return