Volume 38 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
YAO Yao, WANG Zhanxue, ZHANG Xiaobo, et al. Modeling method and cycle analysis of high-speed gas turbine engine with CCA technology[J]. Journal of Aerospace Power, 2023, 38(6):1378-1390 doi: 10.13224/j.cnki.jasp.20220505
Citation: YAO Yao, WANG Zhanxue, ZHANG Xiaobo, et al. Modeling method and cycle analysis of high-speed gas turbine engine with CCA technology[J]. Journal of Aerospace Power, 2023, 38(6):1378-1390 doi: 10.13224/j.cnki.jasp.20220505

Modeling method and cycle analysis of high-speed gas turbine engine with CCA technology

doi: 10.13224/j.cnki.jasp.20220505
  • Received Date: 2022-07-13
    Available Online: 2023-03-30
  • For the thermal protection of turbine components of high-speed gas turbine engines, a variable cycle turbofan (VCTF) engine with cooled cooling air (CCA) technology was taken as an example. The library of fuel thermal physical property, and the simulation model of the heat exchanger, the turbine blade cooling, and the combustion chamber with fuel temperature change were established. The iteration simulation model of design point for the high-speed VCTF engine was developed, and the influence on the thermodynamic cycle performance of the VCTF engine with CCA technology was analyzed. Results showed that at the same turbine temperature limits level, the CCA technology can further increase the thrust of the high-speed gas turbine engine. However, the application of high-temperature resistant material into turbine blades was still the key to improving the performance of the high-speed gas turbine engine. For the low-pressure turbine (LPT) without high-temperature resistant material, the relative cooling air bleeds of the LPT stator and rotor increased with the increase of high-pressure turbine (HPT) temperature limits level; after the CCA technology was adopted, the relative cooling air bleed of the LPT stator decreased, and that of the LPT rotor without cooled cooling air further increased. Applying high-temperature resistant material into LPT can reduce this adverse effect.

     

  • loading
  • [1]
    王占学,张明阳,张晓博,等. 变循环涡扇冲压组合发动机发展现状及关键技术分析[J]. 推进技术,2020,41(9): 1921-1934. doi: 10.13675/j.cnki.tjjs.200321

    WANG Zhanxue,ZHANG Mingyang,ZHANG Xiaobo,et al. Development status and key technologies of variable cycle turbofan-ramjet engine[J]. Journal of Propulsion Technology,2020,41(9): 1921-1934. (in Chinese) doi: 10.13675/j.cnki.tjjs.200321
    [2]
    MARLEY C D, DRISCOLL J F. Modeling an active and passive thermal protection system for a hypersonic vehicle[R]. AIAA 2017-0118, 2017.
    [3]
    MURTHY N B, CURRAN E T. Developments in high-speed vehicle propulsion systems[M]. Blacksburg, US: AIAA Press, 1996.
    [4]
    STEPKA F S. Considerations of turbine cooling systems for Mach 3 flight[R]. NASA/TN-1968-D-4491, 1968.
    [5]
    BERGHOLZ F R, HITCH B D. Thermal management systems for high Mach airbreathing propulsion[R]. AIAA-92-0515, 1992.
    [6]
    RUED K, EBENHOCH G, MARK H. Thermal management of propulsion systems in hypersonic vehicles[R]. AIAA-92-0516, 1992
    [7]
    KISHI K, KUNO N, KASHIWAGI T, et al. Exhaust nozzle research in Japanese HYPR program[R]. AIAA-95-2606, 1995.
    [8]
    KISHI K,JOUBERT H. Research of 2-D variable exhaust nozzle[J]. International Journal of Gas Turbine, Propulsion and Power Systems,2013,5(1): 17-22. doi: 10.38036/jgpp.5.1_17
    [9]
    BARTOLOTTA P A, MCNELIS N B, SHAFER D G. High speed turbines: development of a turbine accelerator (RTA) for space access[R]. AIAA 2003-6943, 2003.
    [10]
    BRUENING G B, CHANG W S. Cooled cooling air systems for turbine thermal management[R]. ASME 99-GT-014, 1999.
    [11]
    SNYDER E L, ESCHER D W. Turbine based combination cycle (TBCC) propulsion subsystem integration[R]. AIAA 2004-3649, 2004.
    [12]
    GAMBLE E J, HAID D A, D’ALESSANDRO S, et al. Dual-mode scramjet performance model for TBCC simulation[R]. AIAA 2009-5298, 2009.
    [13]
    GAMBLE E J, HAID D A. Thermal management and fuel system model for TBCC dynamic simulation[R]. AIAA 2010-6642, 2010.
    [14]
    LOU D C,GUO W,WANG Z G,et al. Integrated thermal management system design for advanced propulsion system[J]. Applied Mechanics and Materials,2012,232: 723-729. doi: 10.4028/www.scientific.net/AMM.232.723
    [15]
    刘友宏,李甲珊,唐世建,等. 涡轮冲压组合发动机燃油系统温升仿真研究[J]. 推进技术,2020,41(5): 984-991. doi: 10.13675/j.cnki.tjjs.180594

    LIU Youhong,LI Jiashan,TANG Shijian,et al. Simulation of fuel system temperature rise in turbine based combined cycle engine[J]. Journal of Propulsion Technology,2020,41(5): 984-991. (in Chinese) doi: 10.13675/j.cnki.tjjs.180594
    [16]
    ITAHARA H, KOHARA S, TAKAGI S, et al. Turbo engine research in Japanese HYPR project for HST combined cycle engine[R]. AIAA-94-3358, 1994.
    [17]
    HERRING N R. On the development of compact, high performance heat exchangers for gas turbine applications[D]. West Lafayette, US: Purdue University, 2007.
    [18]
    沙拉, 塞库利克. 换热器设计技术[M]. 程林, 译. 北京: 机械工业出版社, 2010.
    [19]
    张明阳,王占学,张晓博,等. 串联式TBCC发动机风车冲压模态性能模拟[J]. 航空动力学报,2018,33(12): 2939-2949. doi: 10.13224/j.cnki.jasp.2018.12.014

    ZHANG Mingyang,WANG Zhanxue,ZHANG Xiaobo,et al. Simulation of windmilling-ram mode performance for tandem TBCC engine[J]. Journal of Aerospace Power,2018,33(12): 2939-2949. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.12.014
    [20]
    ZHONG F,FAN X,YU G,et al. Heat transfer of aviation kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer,2009,23(3): 543-550. doi: 10.2514/1.41619
    [21]
    HUBER M L. NIST thermophysical properties of hydrocarbon mixtures database (SUPERTRAPP)[M]. Gaithersburg, US: National Institute of Standards and Technology, 2003.
    [22]
    DENG H W,ZHU K,XU G Q,et al. Isobaric specific heat capacity measurement for kerosene RP-3 in the near-critical and supercritical regions[J]. Journal of Chemical and Engineering Data,2011,57(2): 263-268.
    [23]
    DENG H W,ZHANG C B,XU G Q,et al. Density measurements of endothermic hydrocarbon fuel at sub- and supercritical conditions[J]. Journal of Chemical and Engineering Data,2011,56(6): 2980-2986. doi: 10.1021/je200258g
    [24]
    GAUNTNER J W. Algorithm for calculating turbine cooling glow and the resulting decrease in turbine efficiency[R]. NASA/TM-1980-81453, 1980.
    [25]
    SCHNEIDER S J. Analysis of turbine blade relative cooling flow factor used in the subroutine cool it based on film cooling correlations[R]. NASA/TM-2015-218738, 2015.
    [26]
    YOUNG J B,WILCOCK R C. Modeling the air-cooled gas turbine: Part 2 coolant flows and losses[J]. Journal of Turbomachinery,2002,124(2): 214-221. doi: 10.1115/1.1415038
    [27]
    GORDON S, MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications[R]. NASA/RP-1994-1311, 1994.
    [28]
    MASER A C. Optimal allocation of thermodynamic irreversibility for the integrated design of propulsion and thermal management systems[D]. Atlanta, US: Georgia Institute of Technology, 2012.
    [29]
    陈敏,唐海龙,朱大明,等. 高超声速串联式组合动力装置方案[J]. 北京航空航天大学学报,2007,33(3): 265-268. doi: 10.3969/j.issn.1001-5965.2007.03.004

    CHEN Min,TANG Hailong,ZHU Daming,et al. Hypersonic combined cycle engine concept with tandem layout[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(3): 265-268. (in Chinese) doi: 10.3969/j.issn.1001-5965.2007.03.004
    [30]
    特尼格尔, 闻洁, 付衍琛, 等. 细管蛇形管换热器流动与换热特性实验研究[C]// 中国航天第三专业信息网第39届技术交流会暨第3届空天动力联合会议论文集: S05发动机热管理技术. 河南 洛阳: 中国空天动力联合会, 2018: 2-13.
    [31]
    GREGORY B T. Test results of the Northrop Grumman corporation turbine engine bleed air/fuel heat exchanger after 165 hours of operation with JP-8+100 fuel[R]. AIAA-98-5559, 1998.
    [32]
    郑华雷,苏志敏,黄兴,等. 基于多设计点方法的陶瓷基材料涡桨发动机热力循环分析[J]. 推进技术,2021,42(1): 1-9. doi: 10.13675/j.cnki.tjjs.200183

    ZHENG Hualei,SU Zhimin,HUANG Xing,et al. Thermal cycle analysis of turboprop with ceramic matrix composite based on multiple design points approach[J]. Journal of Propulsion Technology,2021,42(1): 1-9. (in Chinese) doi: 10.13675/j.cnki.tjjs.200183
    [33]
    MATTINGLY J D, HEISER W H, PRATT D T, et al. Aircraft engine design[M]. Blacksburg, US: AIAA Press, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return