Volume 37 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
CHEN Qifei, LIU Shijie, CHEN Shuwei, et al. Fluid-heat-solid coupling numerical study on influence of gas-solid two-phase flow on elbow tube of gas-steam ejection power system[J]. Journal of Aerospace Power, 2022, 37(11):2668-2679 doi: 10.13224/j.cnki.jasp.20220510
Citation: CHEN Qifei, LIU Shijie, CHEN Shuwei, et al. Fluid-heat-solid coupling numerical study on influence of gas-solid two-phase flow on elbow tube of gas-steam ejection power system[J]. Journal of Aerospace Power, 2022, 37(11):2668-2679 doi: 10.13224/j.cnki.jasp.20220510

Fluid-heat-solid coupling numerical study on influence of gas-solid two-phase flow on elbow tube of gas-steam ejection power system

doi: 10.13224/j.cnki.jasp.20220510
  • Received Date: 2022-07-16
    Available Online: 2022-10-10
  • In order to study the influence of particles on the elbow tube, the particle track model was used to calculate the gas-solid two-phase flow in the elbow tube, and the fluid-thermo-structure coupling model was applied to calculate the thermal response of the elbow tube under the two-phase flow. Finally, the influence of the particle size was studied. Results showed that solid particles were gathered on the region outside of the elbow tube near the outlet, such that the temperature and plastic strain of the inner wall at the gathering region rose about 280 K and 60%, with the corresponding local fatigue life decreasing by 48%. Particle size affected the aggregation location and concentration of solid particles, as well as the temperature and plastic strain of the wall near the aggregation location. As the particle size increased, the average volume fraction of the aggregated particles increased and then decreased, resulting in an increase and then a decrease in the internal wall temperature and plastic strain at the gathering region, with the opposite change in local fatigue life. These three quantities reached extreme values when the particle size was around 8µm, with 1042 K, 0.016697 and 244 cycle lives in that order.

     

  • loading
  • [1]
    芮守祯,邢玉明. 几种导弹弹射动力系统内弹道性能比较[J]. 北京航空航天大学学报,2009,35(6): 766-770. doi: 10.13700/j.bh.1001-5965.2009.06.016

    RUI Shouzhen,XING Yuming. Comparative studies of interior ballistic performance among several missiles eject power systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2009,35(6): 766-770. (in Chinese) doi: 10.13700/j.bh.1001-5965.2009.06.016
    [2]
    李咸海, 王俊杰. 潜地导弹发射动力系统[M]. 哈尔滨: 哈尔滨工程大学出版社, 2000: 114.
    [3]
    LEMOINE L. Solid rocket nozzle thermo-structural behavior[R]. AIAA 75-1339, 1975.
    [4]
    孙菊芳,孙冰,相升海. 固体火箭发动机复合结构喷管温度场与应力场理论计算[J]. 推进技术,1994,15(1): 23-31,22. doi: 10.13675/j.cnki.tjjs.1994.01.005

    SUN Jufang,SUN Bin,XIANG Shenghai. Theoretical calculation of complex nozzle’s temperature profile and stress profile in solid rocket motor[J]. Journal of Propulsion Technology,1994,15(1): 23-31,22. (in Chinese) doi: 10.13675/j.cnki.tjjs.1994.01.005
    [5]
    AMAKAWA H, NEGISHI H M N, NISHIMOTO M, et al. Numerical investigation of longer life combustion chambers of liquid rocket engines based on coupled thermal-fluid-structure simulation[R]. Grapevine, US: the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017.
    [6]
    张俊红,戴胡伟,鲁鑫,等. 流固耦合作用下航空发动机燃烧室热疲劳研究[J]. 西安交通大学学报,2018,52(5): 149-156. doi: 10.7652/xjtuxb201805021

    ZHANG Junhong,DAI Huwei,LU Xin,et al. Research on the thermal fatigue of aero-engine combustor under fluid-structure interaction[J]. Journal of Xi’an Jiaotong University,2018,52(5): 149-156. (in Chinese) doi: 10.7652/xjtuxb201805021
    [7]
    陈奇飞,陈树伟,刘士杰,等. 弹射动力系统燃气发生器流热固耦合数值研究[J]. 推进技术,2022,43(6): 208-217. doi: 10.13675/j.cnki.tjjs.200767

    CHEN Qifei,CHEN Shuwei,LIU Shijie,et al. Fluid-heat-solid coupling numerical study on a gas generator of an ejection power system[J]. Journal of Propulsion Technology,2022,43(6): 208-217. (in Chinese) doi: 10.13675/j.cnki.tjjs.200767
    [8]
    陈亚飞. 基于流固耦合的发动机排气歧管热-机械疲劳分析[D]. 武汉: 华中科技大学, 2016.

    CHEN Yafei. Analysis of thermal-mechanical fatigue for engine exhaust manifold base on fluid-solid coupling[D]. Wuhan: Huazhong University of Science and Technology, 2016. (in Chinese)
    [9]
    BOTHA M,HINDLEY M P. One-way fluid structure interaction modelling methodology for boiler tube fatigue failure[J]. Engineering Failure Analysis,2015,48: 1-10. doi: 10.1016/j.engfailanal.2014.10.012
    [10]
    DUARTE C A R,DE S F J,DAS S V F. Numerical investigation of mass loading effects on elbow erosion[J]. Powder Technology,2015,283: 593-606. doi: 10.1016/j.powtec.2015.06.021
    [11]
    KARIMI S,SHIRAZI S A,MCLAURY B S. Predicting fine particle erosion utilizing computational fluid dynamics[J]. Wear,2017,376: 1130-1137.
    [12]
    MOSHFEGH A,SHAMS M,EBRAHIMI R,et al. Two-way coupled simulation of a flow laden with metallic particulates in over expanded TIC nozzle[J]. International Journal of Heat and Fluid Flow,2009,30(6): 1142-1156. doi: 10.1016/j.ijheatfluidflow.2009.09.001
    [13]
    LI Xing,ZHANG Haibin,BAI Bofeng. Particle-free zone of the two-phase flow in a convergent-divergent nozzle[J]. Powder Technology,2021,394: 1169-1177. doi: 10.1016/j.powtec.2021.09.055
    [14]
    黄喻路, 梁国柱. 固体火箭发动机喷管两相流场与结构温度场一体化数值模拟与软件实现[J]. 计算机辅助工程, 2009, 18(2): 25-28.

    HUANG Yulu, LIANG Guozhu. Integrated numerical simulation and software implementation on two-phase flow field and structure temperature field of solid rocket motor nozzle[J]. Computer Aided Engineering. 2009, 18(2): 25-28. (in Chinese)
    [15]
    ZHU Hongjun,ZHAO Hongnan,PAN Qian,et al. Coupling analysis of fluid-structure interaction and flow erosion of gas-solid flow in elbow pipe[J]. Advances in Mechanical Engineering,2014,6: 815945.1-815945.10.
    [16]
    Goossens W R A. Review of the empirical correlations for the drag coefficient of rigid spheres[J]. Powder Technology,2019,352: 350-359. doi: 10.1016/j.powtec.2019.04.075
    [17]
    GRANT G,TABAKOFF W. Erosion prediction in turbomachinery resulting from environmental solid particles[J]. Journal of Aircraft,1975,12(5): 471-478. doi: 10.2514/3.59826
    [18]
    RANZ W E,MARSHALL W R. Evaporation from droplets: Part Ⅰ and Ⅱ[J]. Chemical Engineering Progress,1952,48(4): 141-173.
    [19]
    ROUSTA F,LESSANI B. Near-wall heat transfer of solid particles in particle-laden turbulent flows[J]. International Communications in Heat and Mass Transfer,2020,112: 104475.1-104475.7.
    [20]
    WAGNER W,COOPER J R,DITTMANN A,et al. The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam[J]. Journal of Engineering for Gas Turbines and Power,2000,122(1): 150-184. doi: 10.1115/1.483186
    [21]
    《中国航空材料手册》编委会. 中国航空材料手册: 第1卷 结构钢、不锈钢[M]. 北京: 中国标准出版社, 2001: 208-214.
    [22]
    《机械工程材料性能数据手册》编委会. 机械工程材料性能数据手册[M]. 北京: 机械工业出版社, 1995: 156-162.
    [23]
    王仁, 黄文彬. 塑性力学引论[M]. 北京: 北京大学出版社, 1982: 94-96.
    [24]
    杨滨, 孙文起, 蒋文春, 等. 12Cr1MoV钢管在长时服役后组织及拉伸性能的退化[J]. 机械工程材料, 2019, 43(7): 24-27.

    YANG Bin, SUN Wenqi, JIANG Wenchun, et al. Deterioration of microstructure and tensile properties of 12Cr1MoV steel pipe after long-term service[J]. Materials for Mechanical Engineering. 2019, 43(7): 24-27. (in Chinese)
    [25]
    王东宁, 邢玉荣, 王淑花. 热处理工艺对30CrMnSi钢拉伸性能的影响[J]. 热加工工艺, 2008, 37(6): 64-65, 68.

    WANG Dongning, XING Yurong, WANG Shuhua. Influence of heat treatment technology on tensile property of 30CrMnSi steel[J]. 2008, 37(6): 64-65, 68. (in Chinese)
    [26]
    赵少汴. 抗疲劳设计[M]. 北京: 机械工业出版社, 1994: 128-149.
    [27]
    郭大展,宋小龙,周敬恩,等. 12Cr1MoV焊接大口径锅炉钢管高温应变疲劳特性[J]. 锅炉技术,1995,26(10): 8-13,16.

    Guo Dazhan,SONG Xiaolong,ZHOU Jingen,et al. High temperature strain fatigue characteristics of welded large diameter boiler steel tubes made of 12Cr1MoV[J]. Boiler Technology,1995,26(10): 8-13,16. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (177) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return