Turn off MathJax
Article Contents
ZHANG Yingqiang, ZHANG Yanfeng, ZHU Miaoyi, et al. Influence mechanism of low-pressure turbine blade vibration on separation and transition at low Reynolds number[J]. Journal of Aerospace Power, 2024, 39(X):20220631 doi: 10.13224/j.cnki.jasp.20220631
Citation: ZHANG Yingqiang, ZHANG Yanfeng, ZHU Miaoyi, et al. Influence mechanism of low-pressure turbine blade vibration on separation and transition at low Reynolds number[J]. Journal of Aerospace Power, 2024, 39(X):20220631 doi: 10.13224/j.cnki.jasp.20220631

Influence mechanism of low-pressure turbine blade vibration on separation and transition at low Reynolds number

doi: 10.13224/j.cnki.jasp.20220631
  • Received Date: 2022-08-29
    Available Online: 2024-03-04
  • Numerical simulation methods were used to compare and analyze the effects of low-pressure turbine blade vibration at different frequencies on the separation and transition of suction surface boundary layer and flow losses at low Reynolds number (Re=25000), with its aim of exploring the influence mechanism of low-pressure turbine blade vibration on separation and transition. The research showed that the relative motion between the fluid and the blade due to the blade vibration made the separation flow meet the main flow in advance. The advanced transition caused by this was able to limit the development of the separation bubble, reduce the size of the separation bubble and weaken the backflow mixing inside the separation bubble. The blade vibration thinned the boundary layer, weakened the flow blockage and wake mixing near the trailing edge and substantially lowered the turbulent pulsation level in the separation and transition process. Furthermore, the impacts above reduced the total pressure loss up to 23.02%, and improved the aerodynamic performance significantly.

     

  • loading
  • [1]
    ROBERTS W B. The effect of Reynolds number and laminar separation on axial cascade performance[J]. Journal of Engineering for Power,1975,97(2): 261-273. doi: 10.1115/1.3445978
    [2]
    SUTTON E P,EVANS G P,MCGUINNESS M D,et al. Influence of wall vibrations on a flow with boundary-layer separation at a convex edge[C]//MICHEL R,COUSTEIX J,HOUDEVILLE R. Unsteady turbulent shear flows. Berlin,Germany: Springer,1981: 285-293.
    [3]
    李虹杨,郑赟. 粗糙度对涡轮叶片流动转捩及传热特性的影响[J]. 北京航空航天大学学报,2016,42(10): 2038-2047. LI Hongyang,ZHENG Yun. Effect of surface roughness on flow transition and heat transfer of turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(10): 2038-2047. (in Chinese

    LI Hongyang, ZHENG Yun. Effect of surface roughness on flow transition and heat transfer of turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2038-2047. (in Chinese)
    [4]
    ABUAF N,BUNKER R S,LEE C P. Effects of surface roughness on heat transfer and aerodynamic performance of turbine airfoils[J]. Journal of Turbomachinery,1998,120(3): 522-529. doi: 10.1115/1.2841749
    [5]
    孙爽,雷志军,朱俊强,等. 粗糙度对超高负荷低压涡轮边界层影响[J]. 推进技术,2014,35(3): 347-355. SUN Shuang,LEI Zhijun,ZHU Junqiang,et al. Effects of roughness on boundary layer of ultra-high-lift low-pressure turbine[J]. Journal of Propulsion Technology,2014,35(3): 347-355. (in Chinese

    SUN Shuang, LEI Zhijun, ZHU Junqiang, et al. Effects of roughness on boundary layer of ultra-high-lift low-pressure turbine[J]. Journal of Propulsion Technology, 2014, 35(3): 347-355. (in Chinese)
    [6]
    MAHALLATI A,MCAULIFFE B R,SJOLANDER S A,et al. Aerodynamics of a low-pressure turbine airfoil at low Reynolds numbers: Part Ⅰ: steady flow measurements[J]. Journal of Turbomachinery,2013,135(1): 011010. doi: 10.1115/1.4006319
    [7]
    MAHALLATI A,SJOLANDER S A. Aerodynamics of a low-pressure turbine airfoil at low Reynolds numbers: Part Ⅱ: blade-wake interaction[J]. Journal of Turbomachinery,2013,135(1): 011011. doi: 10.1115/1.4006320
    [8]
    HUANG J. Separation control over low pressure turbine blades using plasma actuators[D]. Notre Dame,US: University of Notre Dame,2005.
    [9]
    张银波,郑伟. 雷诺数对低压涡轮附面层转捩影响的数值研究[J]. 燃气涡轮试验与研究,2015,28(2): 14-19,40. ZHANG Yinbo,ZHENG Wei. Numerical investigation for the effect of Reynolds number on low pressure turbine transition[J]. Gas Turbine Experiment and Research,2015,28(2): 14-19,40. (in Chinese

    ZHANG Yinbo, ZHENG Wei. Numerical investigation for the effect of Reynolds number on low pressure turbine transition[J]. Gas Turbine Experiment and Research, 2015, 28(2): 14-19, 40. (in Chinese)
    [10]
    瞿红春,谭天荣,郭君德,等. 非设计状态下尾迹输运对高负荷低压涡轮附面层的影响[J]. 推进技术,2019,40(9): 1953-1962. QU Hongchun,TAN Tianrong,GUO Junde,et al. Effects of transportation of wakes on boundary layer of high-load low pressure turbine at off-design condition[J]. Journal of Propulsion Technology,2019,40(9): 1953-1962. (in Chinese

    QU Hongchun, TAN Tianrong, GUO Junde, et al. Effects of transportation of wakes on boundary layer of high-load low pressure turbine at off-design condition[J]. Journal of Propulsion Technology, 2019, 40(9): 1953-1962. (in Chinese)
    [11]
    梁赟,刘火星,邹正平. 尾迹对低压涡轮边界层稳定性的影响[J]. 航空动力学报,2016,31(4): 886-893. LIANG (Bin| Yun),LIU Huoxing,ZOU Zhengping. Influence of wakes on boundary layer stability in low-pressure turbines[J]. Journal of Aerospace Power,2016,31(4): 886-893. (in Chinese

    LIANG (Bin| Yun), LIU Huoxing, ZOU Zhengping. Influence of wakes on boundary layer stability in low-pressure turbines[J]. Journal of Aerospace Power, 2016, 31(4): 886-893. (in Chinese)
    [12]
    CUI J,NAGABHUSHANA RAO V,TUCKER P G. Numerical investigation of secondary flows in a high-lift low pressure turbine[J]. International Journal of Heat and Fluid Flow,2017,63: 149-157. doi: 10.1016/j.ijheatfluidflow.2016.05.018
    [13]
    COULL J D,HODSON H P. Unsteady boundary-layer transition in low-pressure turbines[J]. Journal of Fluid Mechanics,2011,681: 370-410. doi: 10.1017/jfm.2011.204
    [14]
    SENGUPTA A,TUCKER P. Effects of forced frequency oscillations and free stream turbulence on the separation-induced transition in pressure gradient dominated flows[J]. Physics of Fluids,2020,32(10): 104105. doi: 10.1063/5.0022865
    [15]
    SENGUPTA A,TUCKER P. Effects of forced frequency oscillations and unsteady wakes on the separation-induced transition in pressure gradient dominated flows[J]. Physics of Fluids,2020,32(9): 094113. doi: 10.1063/5.0023679
    [16]
    NAKHCHI M E,NAUNG S W,RAHMATI M. DNS of secondary flows over oscillating low-pressure turbine using spectral/hp element method[J]. International Journal of Heat and Fluid Flow,2020,86: 108684. doi: 10.1016/j.ijheatfluidflow.2020.108684
    [17]
    SCHWARZBACH F,MIMIC D,HERBST F. Profile aerodynamics of an oscillating low-pressure–turbine blade[J]. International Journal of Gas Turbine,Propulsion and Power Systems,2020,11(4): 68-75. doi: 10.38036/jgpp.11.4_68
    [18]
    MEDIC G,ZHANG V,WANG Guolei,et al. Prediction of transition and losses in compressor cascades using large-eddy simulation[J]. Journal of Turbomachinery,2016,138(12): 121001. doi: 10.1115/1.4033514
    [19]
    QU Xiao,ZHANG Yanfeng,LU Xingen,et al. Effects of periodic wakes on the endwall secondary flow in high-lift low-pressure turbine cascades at low Reynolds numbers[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2019,233(1): 354-368.
    [20]
    张波,李伟,卢新根,等. 变工况下超高负荷低压涡轮叶片边界层被动控制[J]. 航空动力学报,2012,27(12): 2805-2813. ZHANG Bo,LI Wei,LU Xingen,et al. Ultra-high-lift low-pressure turbine blade boundary layer passive control in different flow conditions[J]. Journal of Aerospace Power,2012,27(12): 2805-2813. (in Chinese

    ZHANG Bo, LI Wei, LU Xingen, et al. Ultra-high-lift low-pressure turbine blade boundary layer passive control in different flow conditions[J]. Journal of Aerospace Power, 2012, 27(12): 2805-2813. (in Chinese)
    [21]
    MENTER F. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994,32: 1598-1605. doi: 10.2514/3.12149
    [22]
    屈骁. 超高负荷低压涡轮端区非定常流动机理及新型调控方法研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所),2020. QU Xiao. The investigation of unsteady flow mechanism and new flow control methods in ultra-high-lift LPT cascades[D]. Beijing: Institute of Engineering Thermophysics,Chinese Academy of Sciences,2020. (in Chinese

    QU Xiao. The investigation of unsteady flow mechanism and new flow control methods in ultra-high-lift LPT cascades[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2020. (in Chinese)
    [23]
    王名扬,赵胜丰,李紫良,等. 低雷诺数下高亚声速压气机叶型流动损失机理研究[J]. 推进技术,2020,41(5): 1046-1054. WANG Mingyang,ZHAO Shengfeng,LI Ziliang,et al. Flow and loss mechanism of high subsonic compressor airfoil under low Reynolds number conditions[J]. Journal of Propulsion Technology,2020,41(5): 1046-1054. (in Chinese

    WANG Mingyang, ZHAO Shengfeng, LI Ziliang, et al. Flow and loss mechanism of high subsonic compressor airfoil under low Reynolds number conditions[J]. Journal of Propulsion Technology, 2020, 41(5): 1046-1054. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return